/* Copyright (c) 2007-2010 iMatix Corporation This file is part of 0MQ. 0MQ is free software; you can redistribute it and/or modify it under the terms of the Lesser GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. 0MQ is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the Lesser GNU General Public License for more details. You should have received a copy of the Lesser GNU General Public License along with this program. If not, see . */ #include #include #include "../include/zmq.h" #include "ctx.hpp" #include "socket_base.hpp" #include "app_thread.hpp" #include "io_thread.hpp" #include "platform.hpp" #include "err.hpp" #include "pipe.hpp" #if defined ZMQ_HAVE_WINDOWS #include "windows.h" #endif zmq::ctx_t::ctx_t (uint32_t io_threads_) : sockets (0), terminated (false) { #ifdef ZMQ_HAVE_WINDOWS // Intialise Windows sockets. Note that WSAStartup can be called multiple // times given that WSACleanup will be called for each WSAStartup. WORD version_requested = MAKEWORD (2, 2); WSADATA wsa_data; int rc = WSAStartup (version_requested, &wsa_data); zmq_assert (rc == 0); zmq_assert (LOBYTE (wsa_data.wVersion) == 2 && HIBYTE (wsa_data.wVersion) == 2); #endif // Initialise the array of signalers. signalers_count = max_app_threads + io_threads_; signalers = (signaler_t**) malloc (sizeof (signaler_t*) * signalers_count); zmq_assert (signalers); memset (signalers, 0, sizeof (signaler_t*) * signalers_count); // Create I/O thread objects and launch them. for (uint32_t i = 0; i != io_threads_; i++) { io_thread_t *io_thread = new (std::nothrow) io_thread_t (this, i); zmq_assert (io_thread); io_threads.push_back (io_thread); signalers [i] = io_thread->get_signaler (); io_thread->start (); } } int zmq::ctx_t::term () { // First send stop command to application threads so that any // blocking calls are interrupted. for (app_threads_t::size_type i = 0; i != app_threads.size (); i++) app_threads [i].app_thread->stop (); // Then mark context as terminated. term_sync.lock (); zmq_assert (!terminated); terminated = true; bool destroy = (sockets == 0); term_sync.unlock (); // If there are no sockets open, destroy the context immediately. if (destroy) delete this; return 0; } zmq::ctx_t::~ctx_t () { // Ask I/O threads to terminate. If stop signal wasn't sent to I/O // thread subsequent invocation of destructor would hang-up. for (io_threads_t::size_type i = 0; i != io_threads.size (); i++) io_threads [i]->stop (); // Wait till I/O threads actually terminate. for (io_threads_t::size_type i = 0; i != io_threads.size (); i++) delete io_threads [i]; // Close all application theads, sockets, io_objects etc. for (app_threads_t::size_type i = 0; i != app_threads.size (); i++) delete app_threads [i].app_thread; // Deallocate all the orphaned pipes. while (!pipes.empty ()) delete *pipes.begin (); // Deallocate the array of pointers to signalers. No special work is // needed as signalers themselves were deallocated with their // corresponding (app_/io_) thread objects. free (signalers); #ifdef ZMQ_HAVE_WINDOWS // On Windows, uninitialise socket layer. int rc = WSACleanup (); wsa_assert (rc != SOCKET_ERROR); #endif } zmq::socket_base_t *zmq::ctx_t::create_socket (int type_) { app_threads_sync.lock (); // Find whether the calling thread has app_thread_t object associated // already. At the same time find an unused app_thread_t so that it can // be used if there's no associated object for the calling thread. // Check whether thread ID is already assigned. If so, return it. app_threads_t::size_type unused = app_threads.size (); app_threads_t::size_type current; for (current = 0; current != app_threads.size (); current++) { if (app_threads [current].associated && thread_t::equal (thread_t::id (), app_threads [current].tid)) break; if (!app_threads [current].associated) unused = current; } // If no app_thread_t is associated with the calling thread, // associate it with one of the unused app_thread_t objects. if (current == app_threads.size ()) { // If all the existing app_threads are already used, create one more. if (unused == app_threads.size ()) { // If max_app_threads limit was reached, return error. if (app_threads.size () == max_app_threads) { app_threads_sync.unlock (); errno = EMTHREAD; return NULL; } // Create the new application thread proxy object. app_thread_info_t info; info.associated = false; info.app_thread = new (std::nothrow) app_thread_t (this, io_threads.size () + app_threads.size ()); zmq_assert (info.app_thread); signalers [io_threads.size () + app_threads.size ()] = info.app_thread->get_signaler (); app_threads.push_back (info); } // Incidentally, this works both when there is an unused app_thread // and when a new one is created. current = unused; // Associate the selected app_thread with the OS thread. app_threads [current].associated = true; app_threads [current].tid = thread_t::id (); } app_thread_t *thread = app_threads [current].app_thread; app_threads_sync.unlock (); socket_base_t *s = thread->create_socket (type_); if (!s) return NULL; term_sync.lock (); sockets++; term_sync.unlock (); return s; } void zmq::ctx_t::destroy_socket () { // If zmq_term was already called and there are no more sockets, // terminate the whole 0MQ infrastructure. term_sync.lock (); zmq_assert (sockets > 0); sockets--; bool destroy = (sockets == 0 && terminated); term_sync.unlock (); if (destroy) delete this; } void zmq::ctx_t::no_sockets (app_thread_t *thread_) { app_threads_sync.lock (); app_threads_t::size_type i; for (i = 0; i != app_threads.size (); i++) if (app_threads [i].app_thread == thread_) { app_threads [i].associated = false; break; } zmq_assert (i != app_threads.size ()); app_threads_sync.unlock (); } void zmq::ctx_t::send_command (uint32_t destination_, const command_t &command_) { signalers [destination_]->send (command_); } bool zmq::ctx_t::recv_command (uint32_t thread_slot_, command_t *command_, bool block_) { return signalers [thread_slot_]->recv (command_, block_); } zmq::io_thread_t *zmq::ctx_t::choose_io_thread (uint64_t affinity_) { // Find the I/O thread with minimum load. zmq_assert (io_threads.size () > 0); int min_load = -1; io_threads_t::size_type result = 0; for (io_threads_t::size_type i = 0; i != io_threads.size (); i++) { if (!affinity_ || (affinity_ & (uint64_t (1) << i))) { int load = io_threads [i]->get_load (); if (min_load == -1 || load < min_load) { min_load = load; result = i; } } } zmq_assert (min_load != -1); return io_threads [result]; } void zmq::ctx_t::register_pipe (class pipe_t *pipe_) { pipes_sync.lock (); bool inserted = pipes.insert (pipe_).second; zmq_assert (inserted); pipes_sync.unlock (); } void zmq::ctx_t::unregister_pipe (class pipe_t *pipe_) { pipes_sync.lock (); pipes_t::size_type erased = pipes.erase (pipe_); zmq_assert (erased == 1); pipes_sync.unlock (); } int zmq::ctx_t::register_endpoint (const char *addr_, socket_base_t *socket_) { endpoints_sync.lock (); bool inserted = endpoints.insert (std::make_pair (std::string (addr_), socket_)).second; if (!inserted) { errno = EADDRINUSE; endpoints_sync.unlock (); return -1; } endpoints_sync.unlock (); return 0; } void zmq::ctx_t::unregister_endpoints (socket_base_t *socket_) { endpoints_sync.lock (); endpoints_t::iterator it = endpoints.begin (); while (it != endpoints.end ()) { if (it->second == socket_) { endpoints_t::iterator to_erase = it; it++; endpoints.erase (to_erase); continue; } it++; } endpoints_sync.unlock (); } zmq::socket_base_t *zmq::ctx_t::find_endpoint (const char *addr_) { endpoints_sync.lock (); endpoints_t::iterator it = endpoints.find (addr_); if (it == endpoints.end ()) { endpoints_sync.unlock (); errno = ECONNREFUSED; return NULL; } socket_base_t *endpoint = it->second; // Increment the command sequence number of the peer so that it won't // get deallocated until "bind" command is issued by the caller. // The subsequent 'bind' has to be called with inc_seqnum parameter // set to false, so that the seqnum isn't incremented twice. endpoint->inc_seqnum (); endpoints_sync.unlock (); return endpoint; }