/* Copyright (c) 2007-2011 iMatix Corporation Copyright (c) 2007-2011 Other contributors as noted in the AUTHORS file This file is part of 0MQ. 0MQ is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. 0MQ is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this program. If not, see . */ #include #include #include #include "../include/zmq.h" #include "platform.hpp" #if defined ZMQ_HAVE_WINDOWS #include "windows.hpp" #if defined _MSC_VER #include #endif #else #include #endif #include "socket_base.hpp" #include "zmq_listener.hpp" #include "zmq_connecter.hpp" #include "io_thread.hpp" #include "connect_session.hpp" #include "config.hpp" #include "clock.hpp" #include "pipe.hpp" #include "err.hpp" #include "ctx.hpp" #include "platform.hpp" #include "likely.hpp" #include "uuid.hpp" #include "pair.hpp" #include "pub.hpp" #include "sub.hpp" #include "req.hpp" #include "rep.hpp" #include "pull.hpp" #include "push.hpp" #include "xreq.hpp" #include "xrep.hpp" #include "xpub.hpp" #include "xsub.hpp" bool zmq::socket_base_t::check_tag () { return tag == 0xbaddecaf; } zmq::socket_base_t *zmq::socket_base_t::create (int type_, class ctx_t *parent_, uint32_t tid_) { socket_base_t *s = NULL; switch (type_) { case ZMQ_PAIR: s = new (std::nothrow) pair_t (parent_, tid_); break; case ZMQ_PUB: s = new (std::nothrow) pub_t (parent_, tid_); break; case ZMQ_SUB: s = new (std::nothrow) sub_t (parent_, tid_); break; case ZMQ_REQ: s = new (std::nothrow) req_t (parent_, tid_); break; case ZMQ_REP: s = new (std::nothrow) rep_t (parent_, tid_); break; case ZMQ_XREQ: s = new (std::nothrow) xreq_t (parent_, tid_); break; case ZMQ_XREP: s = new (std::nothrow) xrep_t (parent_, tid_); break; case ZMQ_PULL: s = new (std::nothrow) pull_t (parent_, tid_); break; case ZMQ_PUSH: s = new (std::nothrow) push_t (parent_, tid_); break; case ZMQ_XPUB: s = new (std::nothrow) xpub_t (parent_, tid_); break; case ZMQ_XSUB: s = new (std::nothrow) xsub_t (parent_, tid_); break; default: errno = EINVAL; return NULL; } alloc_assert (s); return s; } zmq::socket_base_t::socket_base_t (ctx_t *parent_, uint32_t tid_) : own_t (parent_, tid_), tag (0xbaddecaf), ctx_terminated (false), destroyed (false), last_tsc (0), ticks (0), rcvmore (false) { } zmq::socket_base_t::~socket_base_t () { zmq_assert (destroyed); // Check whether there are no session leaks. sessions_sync.lock (); zmq_assert (sessions.empty ()); sessions_sync.unlock (); // Mark the socket as dead. tag = 0xdeadbeef; } zmq::mailbox_t *zmq::socket_base_t::get_mailbox () { return &mailbox; } void zmq::socket_base_t::stop () { // Called by ctx when it is terminated (zmq_term). // 'stop' command is sent from the threads that called zmq_term to // the thread owning the socket. This way, blocking call in the // owner thread can be interrupted. send_stop (); } int zmq::socket_base_t::parse_uri (const char *uri_, std::string &protocol_, std::string &address_) { zmq_assert (uri_ != NULL); std::string uri (uri_); std::string::size_type pos = uri.find ("://"); if (pos == std::string::npos) { errno = EINVAL; return -1; } protocol_ = uri.substr (0, pos); address_ = uri.substr (pos + 3); if (protocol_.empty () || address_.empty ()) { errno = EINVAL; return -1; } return 0; } int zmq::socket_base_t::check_protocol (const std::string &protocol_) { // First check out whether the protcol is something we are aware of. if (protocol_ != "inproc" && protocol_ != "ipc" && protocol_ != "tcp" && protocol_ != "pgm" && protocol_ != "epgm" && protocol_ != "sys") { errno = EPROTONOSUPPORT; return -1; } // If 0MQ is not compiled with OpenPGM, pgm and epgm transports // are not avaialble. #if !defined ZMQ_HAVE_OPENPGM if (protocol_ == "pgm" || protocol_ == "epgm") { errno = EPROTONOSUPPORT; return -1; } #endif // IPC transport is not available on Windows and OpenVMS. #if defined ZMQ_HAVE_WINDOWS || defined ZMQ_HAVE_OPENVMS if (protocol_ == "ipc") { // Unknown protocol. errno = EPROTONOSUPPORT; return -1; } #endif // Check whether socket type and transport protocol match. // Specifically, multicast protocols can't be combined with // bi-directional messaging patterns (socket types). if ((protocol_ == "pgm" || protocol_ == "epgm") && options.type != ZMQ_PUB && options.type != ZMQ_SUB && options.type != ZMQ_XPUB && options.type != ZMQ_XSUB) { errno = ENOCOMPATPROTO; return -1; } // Protocol is available. return 0; } void zmq::socket_base_t::attach_pipes (class reader_t *inpipe_, class writer_t *outpipe_, const blob_t &peer_identity_) { // If the peer haven't specified it's identity, let's generate one. if (peer_identity_.size ()) { xattach_pipes (inpipe_, outpipe_, peer_identity_); } else { blob_t identity (1, 0); identity.append (uuid_t ().to_blob (), uuid_t::uuid_blob_len); xattach_pipes (inpipe_, outpipe_, identity); } } int zmq::socket_base_t::setsockopt (int option_, const void *optval_, size_t optvallen_) { if (unlikely (ctx_terminated)) { errno = ETERM; return -1; } // First, check whether specific socket type overloads the option. int rc = xsetsockopt (option_, optval_, optvallen_); if (rc == 0 || errno != EINVAL) return rc; // If the socket type doesn't support the option, pass it to // the generic option parser. return options.setsockopt (option_, optval_, optvallen_); } int zmq::socket_base_t::getsockopt (int option_, void *optval_, size_t *optvallen_) { if (unlikely (ctx_terminated)) { errno = ETERM; return -1; } if (option_ == ZMQ_RCVMORE) { if (*optvallen_ < sizeof (int64_t)) { errno = EINVAL; return -1; } *((int64_t*) optval_) = rcvmore ? 1 : 0; *optvallen_ = sizeof (int64_t); return 0; } if (option_ == ZMQ_FD) { if (*optvallen_ < sizeof (fd_t)) { errno = EINVAL; return -1; } *((fd_t*) optval_) = mailbox.get_fd (); *optvallen_ = sizeof (fd_t); return 0; } if (option_ == ZMQ_EVENTS) { if (*optvallen_ < sizeof (uint32_t)) { errno = EINVAL; return -1; } int rc = process_commands (0, false); if (rc != 0 && (errno == EINTR || errno == ETERM)) return -1; errno_assert (rc == 0); *((uint32_t*) optval_) = 0; if (has_out ()) *((uint32_t*) optval_) |= ZMQ_POLLOUT; if (has_in ()) *((uint32_t*) optval_) |= ZMQ_POLLIN; *optvallen_ = sizeof (uint32_t); return 0; } return options.getsockopt (option_, optval_, optvallen_); } int zmq::socket_base_t::bind (const char *addr_) { if (unlikely (ctx_terminated)) { errno = ETERM; return -1; } // Parse addr_ string. std::string protocol; std::string address; int rc = parse_uri (addr_, protocol, address); if (rc != 0) return -1; rc = check_protocol (protocol); if (rc != 0) return -1; if (protocol == "inproc" || protocol == "sys") { endpoint_t endpoint = {this, options}; return register_endpoint (addr_, endpoint); } if (protocol == "tcp" || protocol == "ipc") { // Choose I/O thread to run the listerner in. io_thread_t *io_thread = choose_io_thread (options.affinity); if (!io_thread) { errno = EMTHREAD; return -1; } // Create and run the listener. zmq_listener_t *listener = new (std::nothrow) zmq_listener_t ( io_thread, this, options); alloc_assert (listener); int rc = listener->set_address (protocol.c_str(), address.c_str ()); if (rc != 0) { delete listener; return -1; } launch_child (listener); return 0; } if (protocol == "pgm" || protocol == "epgm") { // For convenience's sake, bind can be used interchageable with // connect for PGM and EPGM transports. return connect (addr_); } zmq_assert (false); return -1; } int zmq::socket_base_t::connect (const char *addr_) { if (unlikely (ctx_terminated)) { errno = ETERM; return -1; } // Parse addr_ string. std::string protocol; std::string address; int rc = parse_uri (addr_, protocol, address); if (rc != 0) return -1; // Checks that protocol is valid and supported on this system rc = check_protocol (protocol); if (rc != 0) return -1; // Parsed address for validation sockaddr_storage addr; socklen_t addr_len; if (protocol == "tcp") rc = resolve_ip_hostname (&addr, &addr_len, address.c_str ()); else if (protocol == "ipc") rc = resolve_local_path (&addr, &addr_len, address.c_str ()); if (rc != 0) return -1; if (protocol == "inproc" || protocol == "sys") { // TODO: inproc connect is specific with respect to creating pipes // as there's no 'reconnect' functionality implemented. Once that // is in place we should follow generic pipe creation algorithm. // Find the peer endpoint. endpoint_t peer = find_endpoint (addr_); if (!peer.socket) return -1; reader_t *inpipe_reader = NULL; writer_t *inpipe_writer = NULL; reader_t *outpipe_reader = NULL; writer_t *outpipe_writer = NULL; // The total HWM for an inproc connection should be the sum of // the binder's HWM and the connector's HWM. (Similarly for the // SWAP.) int64_t hwm; if (options.hwm == 0 || peer.options.hwm == 0) hwm = 0; else hwm = options.hwm + peer.options.hwm; int64_t swap; if (options.swap == 0 && peer.options.swap == 0) swap = 0; else swap = options.swap + peer.options.swap; // Create inbound pipe, if required. if (options.requires_in) create_pipe (this, peer.socket, hwm, swap, &inpipe_reader, &inpipe_writer); // Create outbound pipe, if required. if (options.requires_out) create_pipe (peer.socket, this, hwm, swap, &outpipe_reader, &outpipe_writer); // Attach the pipes to this socket object. attach_pipes (inpipe_reader, outpipe_writer, peer.options.identity); // Attach the pipes to the peer socket. Note that peer's seqnum // was incremented in find_endpoint function. We don't need it // increased here. send_bind (peer.socket, outpipe_reader, inpipe_writer, options.identity, false); return 0; } // Choose the I/O thread to run the session in. io_thread_t *io_thread = choose_io_thread (options.affinity); if (!io_thread) { errno = EMTHREAD; return -1; } // Create session. connect_session_t *session = new (std::nothrow) connect_session_t ( io_thread, this, options, protocol.c_str (), address.c_str ()); alloc_assert (session); // If 'immediate connect' feature is required, we'll create the pipes // to the session straight away. Otherwise, they'll be created by the // session once the connection is established. if (options.immediate_connect) { reader_t *inpipe_reader = NULL; writer_t *inpipe_writer = NULL; reader_t *outpipe_reader = NULL; writer_t *outpipe_writer = NULL; // Create inbound pipe, if required. if (options.requires_in) create_pipe (this, session, options.hwm, options.swap, &inpipe_reader, &inpipe_writer); // Create outbound pipe, if required. if (options.requires_out) create_pipe (session, this, options.hwm, options.swap, &outpipe_reader, &outpipe_writer); // Attach the pipes to the socket object. attach_pipes (inpipe_reader, outpipe_writer, blob_t ()); // Attach the pipes to the session object. session->attach_pipes (outpipe_reader, inpipe_writer, blob_t ()); } // Activate the session. Make it a child of this socket. launch_child (session); return 0; } int zmq::socket_base_t::send (::zmq_msg_t *msg_, int flags_) { // Check whether the library haven't been shut down yet. if (unlikely (ctx_terminated)) { errno = ETERM; return -1; } // Check whether message passed to the function is valid. if (unlikely ((msg_->flags | ZMQ_MSG_MASK) != 0xff)) { errno = EFAULT; return -1; } // Process pending commands, if any. int rc = process_commands (0, true); if (unlikely (rc != 0)) return -1; // At this point we impose the MORE flag on the message. if (flags_ & ZMQ_SNDMORE) msg_->flags |= ZMQ_MSG_MORE; // Try to send the message. rc = xsend (msg_, flags_); if (rc == 0) return 0; if (unlikely (errno != EAGAIN)) return -1; // In case of non-blocking send we'll simply propagate // the error - including EAGAIN - upwards. if (flags_ & ZMQ_NOBLOCK || options.sndtimeo == 0) return -1; // Compute the time when the timeout should occur. // If the timeout is infite, don't care. clock_t clock ; int timeout = options.sndtimeo; uint64_t end = timeout < 0 ? 0 : (clock.now_ms () + timeout); // Oops, we couldn't send the message. Wait for the next // command, process it and try to send the message again. while (true) { if (unlikely (process_commands (timeout, false) != 0)) return -1; rc = xsend (msg_, flags_); if (rc == 0) break; if (unlikely (errno != EAGAIN)) return -1; if (timeout > 0) { timeout = (int) (end - clock.now_ms ()); if (timeout <= 0) { errno = EAGAIN; return -1; } } } return 0; } int zmq::socket_base_t::recv (::zmq_msg_t *msg_, int flags_) { // Check whether the library haven't been shut down yet. if (unlikely (ctx_terminated)) { errno = ETERM; return -1; } // Check whether message passed to the function is valid. if (unlikely ((msg_->flags | ZMQ_MSG_MASK) != 0xff)) { errno = EFAULT; return -1; } // Get the message. int rc = xrecv (msg_, flags_); if (unlikely (rc != 0 && errno != EAGAIN)) return -1; int err = errno; // Once every inbound_poll_rate messages check for signals and process // incoming commands. This happens only if we are not polling altogether // because there are messages available all the time. If poll occurs, // ticks is set to zero and thus we avoid this code. // // Note that 'recv' uses different command throttling algorithm (the one // described above) from the one used by 'send'. This is because counting // ticks is more efficient than doing RDTSC all the time. if (++ticks == inbound_poll_rate) { if (unlikely (process_commands (0, false) != 0)) return -1; ticks = 0; } // If we have the message, return immediately. if (rc == 0) { rcvmore = msg_->flags & ZMQ_MSG_MORE; if (rcvmore) msg_->flags &= ~ZMQ_MSG_MORE; return 0; } // If we don't have the message, restore the original cause of the problem. errno = err; // If the message cannot be fetched immediately, there are two scenarios. // For non-blocking recv, commands are processed in case there's an // activate_reader command already waiting int a command pipe. // If it's not, return EAGAIN. if (flags_ & ZMQ_NOBLOCK || options.rcvtimeo == 0) { if (errno != EAGAIN) return -1; if (unlikely (process_commands (0, false) != 0)) return -1; ticks = 0; rc = xrecv (msg_, flags_); if (rc == 0) { rcvmore = msg_->flags & ZMQ_MSG_MORE; if (rcvmore) msg_->flags &= ~ZMQ_MSG_MORE; } return rc; } // Compute the time when the timeout should occur. // If the timeout is infite, don't care. clock_t clock ; int timeout = options.rcvtimeo; uint64_t end = timeout < 0 ? 0 : (clock.now_ms () + timeout); // In blocking scenario, commands are processed over and over again until // we are able to fetch a message. bool block = (ticks != 0); while (true) { if (unlikely (process_commands (block ? timeout : 0, false) != 0)) return -1; rc = xrecv (msg_, flags_); if (rc == 0) { ticks = 0; break; } if (unlikely (errno != EAGAIN)) return -1; block = true; if (timeout > 0) { timeout = (int) (end - clock.now_ms ()); if (timeout <= 0) { errno = EAGAIN; return -1; } } } rcvmore = msg_->flags & ZMQ_MSG_MORE; if (rcvmore) msg_->flags &= ~ZMQ_MSG_MORE; return 0; } int zmq::socket_base_t::close () { // Transfer the ownership of the socket from this application thread // to the reaper thread which will take care of the rest of shutdown // process. send_reap (this); return 0; } bool zmq::socket_base_t::has_in () { return xhas_in (); } bool zmq::socket_base_t::has_out () { return xhas_out (); } bool zmq::socket_base_t::register_session (const blob_t &name_, session_t *session_) { sessions_sync.lock (); bool registered = sessions.insert ( sessions_t::value_type (name_, session_)).second; sessions_sync.unlock (); return registered; } void zmq::socket_base_t::unregister_session (const blob_t &name_) { sessions_sync.lock (); sessions_t::iterator it = sessions.find (name_); zmq_assert (it != sessions.end ()); sessions.erase (it); sessions_sync.unlock (); } zmq::session_t *zmq::socket_base_t::find_session (const blob_t &name_) { sessions_sync.lock (); sessions_t::iterator it = sessions.find (name_); if (it == sessions.end ()) { sessions_sync.unlock (); return NULL; } session_t *session = it->second; // Prepare the session for subsequent attach command. session->inc_seqnum (); sessions_sync.unlock (); return session; } void zmq::socket_base_t::start_reaping (poller_t *poller_) { poller = poller_; handle = poller->add_fd (mailbox.get_fd (), this); poller->set_pollin (handle); } int zmq::socket_base_t::process_commands (int timeout_, bool throttle_) { int rc; command_t cmd; if (timeout_ != 0) { // If we are asked to wait, simply ask mailbox to wait. rc = mailbox.recv (&cmd, timeout_); } else { // If we are asked not to wait, check whether we haven't processed // commands recently, so that we can throttle the new commands. // Get the CPU's tick counter. If 0, the counter is not available. uint64_t tsc = zmq::clock_t::rdtsc (); // Optimised version of command processing - it doesn't have to check // for incoming commands each time. It does so only if certain time // elapsed since last command processing. Command delay varies // depending on CPU speed: It's ~1ms on 3GHz CPU, ~2ms on 1.5GHz CPU // etc. The optimisation makes sense only on platforms where getting // a timestamp is a very cheap operation (tens of nanoseconds). if (tsc && throttle_) { // Check whether TSC haven't jumped backwards (in case of migration // between CPU cores) and whether certain time have elapsed since // last command processing. If it didn't do nothing. if (tsc >= last_tsc && tsc - last_tsc <= max_command_delay) return 0; last_tsc = tsc; } // Check whether there are any commands pending for this thread. rc = mailbox.recv (&cmd, 0); } // Process all the commands available at the moment. while (true) { if (rc == -1 && errno == EAGAIN) break; if (rc == -1 && errno == EINTR) return -1; errno_assert (rc == 0); cmd.destination->process_command (cmd); rc = mailbox.recv (&cmd, 0); } if (ctx_terminated) { errno = ETERM; return -1; } return 0; } void zmq::socket_base_t::process_stop () { // Here, someone have called zmq_term while the socket was still alive. // We'll remember the fact so that any blocking call is interrupted and any // further attempt to use the socket will return ETERM. The user is still // responsible for calling zmq_close on the socket though! ctx_terminated = true; } void zmq::socket_base_t::process_bind (reader_t *in_pipe_, writer_t *out_pipe_, const blob_t &peer_identity_) { attach_pipes (in_pipe_, out_pipe_, peer_identity_); } void zmq::socket_base_t::process_unplug () { } void zmq::socket_base_t::process_term (int linger_) { // Unregister all inproc endpoints associated with this socket. // Doing this we make sure that no new pipes from other sockets (inproc) // will be initiated. unregister_endpoints (this); // Continue the termination process immediately. own_t::process_term (linger_); } void zmq::socket_base_t::process_destroy () { destroyed = true; } int zmq::socket_base_t::xsetsockopt (int option_, const void *optval_, size_t optvallen_) { errno = EINVAL; return -1; } bool zmq::socket_base_t::xhas_out () { return false; } int zmq::socket_base_t::xsend (zmq_msg_t *msg_, int options_) { errno = ENOTSUP; return -1; } bool zmq::socket_base_t::xhas_in () { return false; } int zmq::socket_base_t::xrecv (zmq_msg_t *msg_, int options_) { errno = ENOTSUP; return -1; } void zmq::socket_base_t::in_event () { // Process any commands from other threads/sockets that may be available // at the moment. Ultimately, socket will be destroyed. process_commands (false, false); check_destroy (); } void zmq::socket_base_t::out_event () { zmq_assert (false); } void zmq::socket_base_t::timer_event (int id_) { zmq_assert (false); } void zmq::socket_base_t::check_destroy () { // If the object was already marked as destroyed, finish the deallocation. if (destroyed) { // Remove the socket from the reaper's poller. poller->rm_fd (handle); // Remove the socket from the context. destroy_socket (this); // Notify the reaper about the fact. send_reaped (); // Deallocate. own_t::process_destroy (); } }