/* Copyright (c) 2007-2010 iMatix Corporation This file is part of 0MQ. 0MQ is free software; you can redistribute it and/or modify it under the terms of the Lesser GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. 0MQ is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the Lesser GNU General Public License for more details. You should have received a copy of the Lesser GNU General Public License along with this program. If not, see . */ #include #include #include #include "../include/zmq.h" #include "socket_base.hpp" #include "app_thread.hpp" #include "zmq_listener.hpp" #include "zmq_connecter.hpp" #include "io_thread.hpp" #include "session.hpp" #include "config.hpp" #include "owned.hpp" #include "pipe.hpp" #include "err.hpp" #include "ctx.hpp" #include "platform.hpp" #include "pgm_sender.hpp" #include "pgm_receiver.hpp" #include "likely.hpp" #include "uuid.hpp" zmq::socket_base_t::socket_base_t (app_thread_t *parent_) : object_t (parent_), pending_term_acks (0), ticks (0), rcvmore (false), app_thread (parent_), shutting_down (false), sent_seqnum (0), processed_seqnum (0), next_ordinal (1) { } zmq::socket_base_t::~socket_base_t () { } int zmq::socket_base_t::setsockopt (int option_, const void *optval_, size_t optvallen_) { if (unlikely (app_thread->is_terminated ())) { errno = ETERM; return -1; } // First, check whether specific socket type overloads the option. int rc = xsetsockopt (option_, optval_, optvallen_); if (rc == 0 || errno != EINVAL) return rc; // If the socket type doesn't support the option, pass it to // the generic option parser. return options.setsockopt (option_, optval_, optvallen_); } int zmq::socket_base_t::getsockopt (int option_, void *optval_, size_t *optvallen_) { if (unlikely (app_thread->is_terminated ())) { errno = ETERM; return -1; } if (option_ == ZMQ_RCVMORE) { if (*optvallen_ < sizeof (int64_t)) { errno = EINVAL; return -1; } *((int64_t*) optval_) = rcvmore ? 1 : 0; *optvallen_ = sizeof (int64_t); return 0; } return options.getsockopt (option_, optval_, optvallen_); } int zmq::socket_base_t::bind (const char *addr_) { if (unlikely (app_thread->is_terminated ())) { errno = ETERM; return -1; } // Parse addr_ string. std::string addr_type; std::string addr_args; std::string addr (addr_); std::string::size_type pos = addr.find ("://"); if (pos == std::string::npos) { errno = EINVAL; return -1; } addr_type = addr.substr (0, pos); addr_args = addr.substr (pos + 3); if (addr_type == "inproc") return register_endpoint (addr_args.c_str (), this); if (addr_type == "tcp" || addr_type == "ipc") { #if defined ZMQ_HAVE_WINDOWS || defined ZMQ_HAVE_OPENVMS if (addr_type == "ipc") { errno = EPROTONOSUPPORT; return -1; } #endif zmq_listener_t *listener = new (std::nothrow) zmq_listener_t ( choose_io_thread (options.affinity), this, options); zmq_assert (listener); int rc = listener->set_address (addr_type.c_str(), addr_args.c_str ()); if (rc != 0) { delete listener; return -1; } send_plug (listener); send_own (this, listener); return 0; } #if defined ZMQ_HAVE_OPENPGM if (addr_type == "pgm" || addr_type == "epgm") { // In the case of PGM bind behaves the same like connect. return connect (addr_); } #endif // Unknown protocol. errno = EPROTONOSUPPORT; return -1; } int zmq::socket_base_t::connect (const char *addr_) { if (unlikely (app_thread->is_terminated ())) { errno = ETERM; return -1; } // Parse addr_ string. std::string addr_type; std::string addr_args; std::string addr (addr_); std::string::size_type pos = addr.find ("://"); if (pos == std::string::npos) { errno = EINVAL; return -1; } addr_type = addr.substr (0, pos); addr_args = addr.substr (pos + 3); if (addr_type == "inproc") { // TODO: inproc connect is specific with respect to creating pipes // as there's no 'reconnect' functionality implemented. Once that // is in place we should follow generic pipe creation algorithm. // Find the peer socket. socket_base_t *peer = find_endpoint (addr_args.c_str ()); if (!peer) return -1; pipe_t *in_pipe = NULL; pipe_t *out_pipe = NULL; // Create inbound pipe, if required. if (options.requires_in) { in_pipe = new (std::nothrow) pipe_t (this, peer, options.hwm, options.swap); zmq_assert (in_pipe); } // Create outbound pipe, if required. if (options.requires_out) { out_pipe = new (std::nothrow) pipe_t (peer, this, options.hwm, options.swap); zmq_assert (out_pipe); } // Attach the pipes to this socket object. attach_pipes (in_pipe ? &in_pipe->reader : NULL, out_pipe ? &out_pipe->writer : NULL, blob_t ()); // Attach the pipes to the peer socket. Note that peer's seqnum // was incremented in find_endpoint function. The callee is notified // about the fact via the last parameter. send_bind (peer, out_pipe ? &out_pipe->reader : NULL, in_pipe ? &in_pipe->writer : NULL, options.identity, false); return 0; } // Create unnamed session. io_thread_t *io_thread = choose_io_thread (options.affinity); session_t *session = new (std::nothrow) session_t (io_thread, this, options); zmq_assert (session); // If 'immediate connect' feature is required, we'll created the pipes // to the session straight away. Otherwise, they'll be created by the // session once the connection is established. if (options.immediate_connect) { pipe_t *in_pipe = NULL; pipe_t *out_pipe = NULL; // Create inbound pipe, if required. if (options.requires_in) { in_pipe = new (std::nothrow) pipe_t (this, session, options.hwm, options.swap); zmq_assert (in_pipe); } // Create outbound pipe, if required. if (options.requires_out) { out_pipe = new (std::nothrow) pipe_t (session, this, options.hwm, options.swap); zmq_assert (out_pipe); } // Attach the pipes to the socket object. attach_pipes (in_pipe ? &in_pipe->reader : NULL, out_pipe ? &out_pipe->writer : NULL, blob_t ()); // Attach the pipes to the session object. session->attach_pipes (out_pipe ? &out_pipe->reader : NULL, in_pipe ? &in_pipe->writer : NULL, blob_t ()); } // Activate the session. send_plug (session); send_own (this, session); if (addr_type == "tcp" || addr_type == "ipc") { #if defined ZMQ_HAVE_WINDOWS || defined ZMQ_HAVE_OPENVMS // Windows named pipes are not compatible with Winsock API. // There's no UNIX domain socket implementation on OpenVMS. if (addr_type == "ipc") { errno = EPROTONOSUPPORT; return -1; } #endif // Create the connecter object. Supply it with the session name // so that it can bind the new connection to the session once // it is established. zmq_connecter_t *connecter = new (std::nothrow) zmq_connecter_t ( choose_io_thread (options.affinity), this, options, session->get_ordinal (), false); zmq_assert (connecter); int rc = connecter->set_address (addr_type.c_str(), addr_args.c_str ()); if (rc != 0) { delete connecter; return -1; } send_plug (connecter); send_own (this, connecter); return 0; } #if defined ZMQ_HAVE_OPENPGM if (addr_type == "pgm" || addr_type == "epgm") { // If the socket type requires bi-directional communication // multicast is not an option (it is uni-directional). if (options.requires_in && options.requires_out) { errno = ENOCOMPATPROTO; return -1; } // For epgm, pgm transport with UDP encapsulation is used. bool udp_encapsulation = (addr_type == "epgm"); // At this point we'll create message pipes to the session straight // away. There's no point in delaying it as no concept of 'connect' // exists with PGM anyway. if (options.requires_out) { // PGM sender. pgm_sender_t *pgm_sender = new (std::nothrow) pgm_sender_t ( choose_io_thread (options.affinity), options); zmq_assert (pgm_sender); int rc = pgm_sender->init (udp_encapsulation, addr_args.c_str ()); if (rc != 0) { delete pgm_sender; return -1; } send_attach (session, pgm_sender, blob_t ()); } else if (options.requires_in) { // PGM receiver. pgm_receiver_t *pgm_receiver = new (std::nothrow) pgm_receiver_t ( choose_io_thread (options.affinity), options); zmq_assert (pgm_receiver); int rc = pgm_receiver->init (udp_encapsulation, addr_args.c_str ()); if (rc != 0) { delete pgm_receiver; return -1; } send_attach (session, pgm_receiver, blob_t ()); } else zmq_assert (false); return 0; } #endif // Unknown protoco. errno = EPROTONOSUPPORT; return -1; } int zmq::socket_base_t::send (::zmq_msg_t *msg_, int flags_) { // Process pending commands, if any. if (unlikely (!app_thread->process_commands (false, true))) { errno = ETERM; return -1; } // At this point we impose the MORE flag on the message. if (flags_ & ZMQ_SNDMORE) msg_->flags |= ZMQ_MSG_MORE; // Try to send the message. int rc = xsend (msg_, flags_); if (rc == 0) return 0; // In case of non-blocking send we'll simply propagate // the error - including EAGAIN - upwards. if (flags_ & ZMQ_NOBLOCK) return -1; // Oops, we couldn't send the message. Wait for the next // command, process it and try to send the message again. while (rc != 0) { if (errno != EAGAIN) return -1; if (unlikely (!app_thread->process_commands (true, false))) { errno = ETERM; return -1; } rc = xsend (msg_, flags_); } return 0; } int zmq::socket_base_t::recv (::zmq_msg_t *msg_, int flags_) { // Get the message. int rc = xrecv (msg_, flags_); int err = errno; // Once every inbound_poll_rate messages check for signals and process // incoming commands. This happens only if we are not polling altogether // because there are messages available all the time. If poll occurs, // ticks is set to zero and thus we avoid this code. // // Note that 'recv' uses different command throttling algorithm (the one // described above) from the one used by 'send'. This is because counting // ticks is more efficient than doing rdtsc all the time. if (++ticks == inbound_poll_rate) { if (unlikely (!app_thread->process_commands (false, false))) { errno = ETERM; return -1; } ticks = 0; } // If we have the message, return immediately. if (rc == 0) { rcvmore = msg_->flags & ZMQ_MSG_MORE; if (rcvmore) msg_->flags &= ~ZMQ_MSG_MORE; return 0; } // If we don't have the message, restore the original cause of the problem. errno = err; // If the message cannot be fetched immediately, there are two scenarios. // For non-blocking recv, commands are processed in case there's a revive // command already waiting int a command pipe. If it's not, return EAGAIN. if (flags_ & ZMQ_NOBLOCK) { if (errno != EAGAIN) return -1; if (unlikely (!app_thread->process_commands (false, false))) { errno = ETERM; return -1; } ticks = 0; rc = xrecv (msg_, flags_); if (rc == 0) { rcvmore = msg_->flags & ZMQ_MSG_MORE; if (rcvmore) msg_->flags &= ~ZMQ_MSG_MORE; } return rc; } // In blocking scenario, commands are processed over and over again until // we are able to fetch a message. while (rc != 0) { if (errno != EAGAIN) return -1; if (unlikely (!app_thread->process_commands (true, false))) { errno = ETERM; return -1; } rc = xrecv (msg_, flags_); ticks = 0; } rcvmore = msg_->flags & ZMQ_MSG_MORE; if (rcvmore) msg_->flags &= ~ZMQ_MSG_MORE; return 0; } int zmq::socket_base_t::close () { shutting_down = true; // Let the thread know that the socket is no longer available. app_thread->remove_socket (this); // Pointer to the context must be retrieved before the socket is // deallocated. Afterwards it is not available. ctx_t *ctx = get_ctx (); // Unregister all inproc endpoints associated with this socket. // From this point we are sure that inc_seqnum won't be called again // on this object. ctx->unregister_endpoints (this); // Wait till all undelivered commands are delivered. This should happen // very quickly. There's no way to wait here for extensive period of time. while (processed_seqnum != sent_seqnum.get ()) app_thread->process_commands (true, false); while (true) { // On third pass of the loop there should be no more I/O objects // because all connecters and listerners were destroyed during // the first pass and all engines delivered by delayed 'own' commands // are destroyed during the second pass. if (io_objects.empty () && !pending_term_acks) break; // Send termination request to all associated I/O objects. for (io_objects_t::iterator it = io_objects.begin (); it != io_objects.end (); it++) send_term (*it); // Move the objects to the list of pending term acks. pending_term_acks += io_objects.size (); io_objects.clear (); // Process commands till we get all the termination acknowledgements. while (pending_term_acks) app_thread->process_commands (true, false); } // Check whether there are no session leaks. sessions_sync.lock (); zmq_assert (named_sessions.empty ()); zmq_assert (unnamed_sessions.empty ()); sessions_sync.unlock (); delete this; // This function must be called after the socket is completely deallocated // as it may cause termination of the whole 0MQ infrastructure. ctx->destroy_socket (); return 0; } void zmq::socket_base_t::inc_seqnum () { // NB: This function may be called from a different thread! sent_seqnum.add (1); } zmq::app_thread_t *zmq::socket_base_t::get_thread () { return app_thread; } bool zmq::socket_base_t::has_in () { return xhas_in (); } bool zmq::socket_base_t::has_out () { return xhas_out (); } bool zmq::socket_base_t::register_session (const blob_t &peer_identity_, session_t *session_) { sessions_sync.lock (); bool registered = named_sessions.insert ( std::make_pair (peer_identity_, session_)).second; sessions_sync.unlock (); return registered; } void zmq::socket_base_t::unregister_session (const blob_t &peer_identity_) { sessions_sync.lock (); named_sessions_t::iterator it = named_sessions.find (peer_identity_); zmq_assert (it != named_sessions.end ()); named_sessions.erase (it); sessions_sync.unlock (); } zmq::session_t *zmq::socket_base_t::find_session (const blob_t &peer_identity_) { sessions_sync.lock (); named_sessions_t::iterator it = named_sessions.find (peer_identity_); if (it == named_sessions.end ()) { sessions_sync.unlock (); return NULL; } session_t *session = it->second; // Prepare the session for subsequent attach command. session->inc_seqnum (); sessions_sync.unlock (); return session; } uint64_t zmq::socket_base_t::register_session (session_t *session_) { sessions_sync.lock (); uint64_t ordinal = next_ordinal; next_ordinal++; unnamed_sessions.insert (std::make_pair (ordinal, session_)); sessions_sync.unlock (); return ordinal; } void zmq::socket_base_t::unregister_session (uint64_t ordinal_) { sessions_sync.lock (); unnamed_sessions_t::iterator it = unnamed_sessions.find (ordinal_); zmq_assert (it != unnamed_sessions.end ()); unnamed_sessions.erase (it); sessions_sync.unlock (); } zmq::session_t *zmq::socket_base_t::find_session (uint64_t ordinal_) { sessions_sync.lock (); unnamed_sessions_t::iterator it = unnamed_sessions.find (ordinal_); if (it == unnamed_sessions.end ()) { sessions_sync.unlock (); return NULL; } session_t *session = it->second; // Prepare the session for subsequent attach command. session->inc_seqnum (); sessions_sync.unlock (); return session; } void zmq::socket_base_t::kill (reader_t *pipe_) { xkill (pipe_); } void zmq::socket_base_t::revive (reader_t *pipe_) { xrevive (pipe_); } void zmq::socket_base_t::revive (writer_t *pipe_) { xrevive (pipe_); } void zmq::socket_base_t::attach_pipes (class reader_t *inpipe_, class writer_t *outpipe_, const blob_t &peer_identity_) { if (inpipe_) inpipe_->set_endpoint (this); if (outpipe_) outpipe_->set_endpoint (this); // If the peer haven't specified it's identity, let's generate one. if (peer_identity_.size ()) { xattach_pipes (inpipe_, outpipe_, peer_identity_); } else { blob_t identity (1, 0); identity.append (uuid_t ().to_blob (), uuid_t::uuid_blob_len); xattach_pipes (inpipe_, outpipe_, identity); } } void zmq::socket_base_t::detach_inpipe (class reader_t *pipe_) { xdetach_inpipe (pipe_); pipe_->set_endpoint (NULL); // ? } void zmq::socket_base_t::detach_outpipe (class writer_t *pipe_) { xdetach_outpipe (pipe_); pipe_->set_endpoint (NULL); // ? } void zmq::socket_base_t::process_own (owned_t *object_) { io_objects.insert (object_); } void zmq::socket_base_t::process_bind (reader_t *in_pipe_, writer_t *out_pipe_, const blob_t &peer_identity_) { attach_pipes (in_pipe_, out_pipe_, peer_identity_); } void zmq::socket_base_t::process_term_req (owned_t *object_) { // When shutting down we can ignore termination requests from owned // objects. They are going to be terminated anyway. if (shutting_down) return; // If I/O object is well and alive ask it to terminate. io_objects_t::iterator it = std::find (io_objects.begin (), io_objects.end (), object_); // If not found, we assume that termination request was already sent to // the object so we can sagely ignore the request. if (it == io_objects.end ()) return; pending_term_acks++; io_objects.erase (it); send_term (object_); } void zmq::socket_base_t::process_term_ack () { zmq_assert (pending_term_acks); pending_term_acks--; } void zmq::socket_base_t::process_seqnum () { processed_seqnum++; }