summaryrefslogtreecommitdiff
path: root/doc/zmq_device.txt
blob: 93e616da568070c1a47aa34eabe9e76838e1bf83 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
zmq_device(3)
=============

NAME
----
zmq_device - start built-in 0MQ device


SYNOPSIS
--------
*int zmq_device (int 'device', const void '*frontend', const void '*backend');*


DESCRIPTION
-----------
The _zmq_device()_ function starts a built-in 0MQ device. The 'device' argument
is one of:

'ZMQ_QUEUE'::
    starts a queue device
'ZMQ_FORWARDER'::
    starts a forwarder device
'ZMQ_STREAMER'::
    starts a streamer device

The device connects a frontend socket to a backend socket. Conceptually, data
flows from frontend to backend. Depending on the socket types, replies may flow
in the opposite direction.

Before calling _zmq_device()_ you must set any socket options, and connect or
bind both frontend and backend sockets. The two conventional device models are:

*proxy*::
    bind frontend socket to an endpoint, and connect backend socket to
    downstream components. A proxy device model does not require changes to
    the downstream topology but that topology is static (any changes require
    reconfiguring the device).
*broker*::
    bind frontend socket to one endpoint and bind backend socket to a second
    endpoint. Downstream components must now connect into the device. A broker
    device model allows a dynamic downstream topology (components can come and 
    go at any time).

_zmq_device()_ runs in the current thread and returns only if/when the current
context is closed.


QUEUE DEVICE
------------
'ZMQ_QUEUE' creates a shared queue that collects requests from a set of clients,
and distributes these fairly among a set of services. Requests are fair-queued
from frontend connections and load-balanced between backend connections. 
Replies automatically return to the client that made the original request.

This device is part of the 'request-reply' pattern. The frontend speaks to
clients and the backend speaks to services. You should use 'ZMQ_QUEUE' with a
'ZMQ_XREP' socket for the frontend and a 'ZMQ_XREQ' socket for the backend. 
Other combinations are not documented.

Refer to linkzmq:zmq_socket[3] for a description of these socket types.


FORWARDER DEVICE
----------------
'ZMQ_FORWARDER' collects messages from a set of publishers and forwards these to
a set of subscribers. You will generally use this to bridge networks, e.g. read
on TCP unicast and forward on multicast.

This device is part of the 'publish-subscribe' pattern. The frontend speaks to
publishers and the backend speaks to subscribers. You should use
'ZMQ_FORWARDER' with a 'ZMQ_SUB' socket for the frontend and a 'ZMQ_PUB' socket
for the backend. Other combinations are not documented.

Refer to linkzmq:zmq_socket[3] for a description of these socket types.


STREAMER DEVICE
---------------
'ZMQ_STREAMER' collects tasks from a set of pushers and forwards these to a set
of pullers. You will generally use this to bridge networks. Messages are
fair-queued from pushers and load-balanced to pullers.

This device is part of the 'pipeline' pattern. The frontend speaks to pushers
and the backend speaks to pullers. You should use 'ZMQ_STREAMER' with a
'ZMQ_PULL' socket for the frontend and a 'ZMQ_PUSH' socket for the backend. 
Other combinations are not documented.

Refer to linkzmq:zmq_socket[3] for a description of these socket types.


RETURN VALUE
------------
The _zmq_device()_ function always returns `-1` and 'errno' set to *ETERM* (the
0MQ 'context' associated with either of the specified sockets was terminated).


EXAMPLE
-------
.Creating a queue broker
----
//  Create frontend and backend sockets
void *frontend = zmq_socket (context, ZMQ_XREP);
assert (backend);
void *backend = zmq_socket (context, ZMQ_XREQ);
assert (frontend);
//  Bind both sockets to TCP ports
assert (zmq_bind (frontend, "tcp://*:5555") == 0);
assert (zmq_bind (backend, "tcp://*:5556") == 0);
//  Start a queue device
zmq_device (ZMQ_QUEUE, frontend, backend);
----


SEE ALSO
--------
linkzmq:zmq_bind[3]
linkzmq:zmq_connect[3]
linkzmq:zmq_socket[3]
linkzmq:zmq[7]


AUTHORS
-------
This 0MQ manual page was written by Pieter Hintjens <ph@imatix.com>


RESOURCES
---------
Main web site: <http://www.zeromq.org/>

Report bugs to the 0MQ development mailing list: <zeromq-dev@lists.zeromq.org>


COPYING
-------
Free use of this software is granted under the terms of the GNU Lesser General
Public License (LGPL). For details see the files `COPYING` and `COPYING.LESSER`
included with the 0MQ distribution.