1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
|
/*
Copyright (c) 2007-2011 iMatix Corporation
Copyright (c) 2007-2011 Other contributors as noted in the AUTHORS file
This file is part of 0MQ.
0MQ is free software; you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
0MQ is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef __PGM_SOCKET_HPP_INCLUDED__
#define __PGM_SOCKET_HPP_INCLUDED__
#include "platform.hpp"
#if defined ZMQ_HAVE_OPENPGM
#ifdef ZMQ_HAVE_WINDOWS
#include "windows.hpp"
#endif
#define __PGM_WININT_H__
#include <pgm/pgm.h>
#ifdef ZMQ_HAVE_OSX
#include <pgm/in.h>
#endif
#include "fd.hpp"
#include "options.hpp"
namespace zmq
{
// Encapsulates PGM socket.
class pgm_socket_t
{
public:
// If receiver_ is true PGM transport is not generating SPM packets.
pgm_socket_t (bool receiver_, const options_t &options_);
// Closes the transport.
~pgm_socket_t ();
// Initialize PGM network structures (GSI, GSRs).
int init (bool udp_encapsulation_, const char *network_);
// Get receiver fds and store them into user allocated memory.
void get_receiver_fds (fd_t *receive_fd_, fd_t *waiting_pipe_fd_);
// Get sender and receiver fds and store it to user allocated
// memory. Receive fd is used to process NAKs from peers.
void get_sender_fds (fd_t *send_fd_, fd_t *receive_fd_,
fd_t *rdata_notify_fd_, fd_t *pending_notify_fd_);
// Send data as one APDU, transmit window owned memory.
size_t send (unsigned char *data_, size_t data_len_);
// Returns max tsdu size without fragmentation.
size_t get_max_tsdu_size ();
// Receive data from pgm socket.
ssize_t receive (void **data_, const pgm_tsi_t **tsi_);
long get_rx_timeout ();
long get_tx_timeout ();
// POLLIN on sender side should mean NAK or SPMR receiving.
// process_upstream function is used to handle such a situation.
void process_upstream ();
private:
// Compute size of the buffer based on rate and recovery interval.
int compute_sqns (int tpdu_);
// OpenPGM transport.
pgm_sock_t* sock;
int last_rx_status, last_tx_status;
// Associated socket options.
options_t options;
// true when pgm_socket should create receiving side.
bool receiver;
// Array of pgm_msgv_t structures to store received data
// from the socket (pgm_transport_recvmsgv).
pgm_msgv_t *pgm_msgv;
// Size of pgm_msgv array.
size_t pgm_msgv_len;
// How many bytes were read from pgm socket.
size_t nbytes_rec;
// How many bytes were processed from last pgm socket read.
size_t nbytes_processed;
// How many messages from pgm_msgv were already sent up.
size_t pgm_msgv_processed;
};
}
#endif
#endif
|