/*
Copyright (c) 2007-2010 iMatix Corporation
This file is part of 0MQ.
0MQ is free software; you can redistribute it and/or modify it under
the terms of the Lesser GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
0MQ is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Lesser GNU General Public License for more details.
You should have received a copy of the Lesser GNU General Public License
along with this program. If not, see .
*/
#include
#include
#include "../include/zmq.h"
#include "ctx.hpp"
#include "socket_base.hpp"
#include "io_thread.hpp"
#include "platform.hpp"
#include "err.hpp"
#include "pipe.hpp"
#if defined ZMQ_HAVE_WINDOWS
#include "windows.h"
#else
#include "unistd.h"
#endif
zmq::ctx_t::ctx_t (uint32_t io_threads_) :
no_sockets_notify (false)
{
#ifdef ZMQ_HAVE_WINDOWS
// Intialise Windows sockets. Note that WSAStartup can be called multiple
// times given that WSACleanup will be called for each WSAStartup.
WORD version_requested = MAKEWORD (2, 2);
WSADATA wsa_data;
int rc = WSAStartup (version_requested, &wsa_data);
zmq_assert (rc == 0);
zmq_assert (LOBYTE (wsa_data.wVersion) == 2 &&
HIBYTE (wsa_data.wVersion) == 2);
#endif
// Initialise the array of signalers.
slot_count = max_sockets + io_threads_;
slots = (signaler_t**) malloc (sizeof (signaler_t*) * slot_count);
zmq_assert (slots);
// Create I/O thread objects and launch them.
for (uint32_t i = 0; i != io_threads_; i++) {
io_thread_t *io_thread = new (std::nothrow) io_thread_t (this, i);
zmq_assert (io_thread);
io_threads.push_back (io_thread);
slots [i] = io_thread->get_signaler ();
io_thread->start ();
}
// In the unused part of the slot array, create a list of empty slots.
for (uint32_t i = slot_count - 1; i >= io_threads_; i--) {
empty_slots.push_back (i);
slots [i] = NULL;
}
}
zmq::ctx_t::~ctx_t ()
{
// Check that there are no remaining open or zombie sockets.
zmq_assert (sockets.empty ());
zmq_assert (zombies.empty ());
// Ask I/O threads to terminate. If stop signal wasn't sent to I/O
// thread subsequent invocation of destructor would hang-up.
for (io_threads_t::size_type i = 0; i != io_threads.size (); i++)
io_threads [i]->stop ();
// Wait till I/O threads actually terminate.
for (io_threads_t::size_type i = 0; i != io_threads.size (); i++)
delete io_threads [i];
// Deallocate the array of slot. No special work is
// needed as signalers themselves were deallocated with their
// corresponding io_thread/socket objects.
free (slots);
#ifdef ZMQ_HAVE_WINDOWS
// On Windows, uninitialise socket layer.
int rc = WSACleanup ();
wsa_assert (rc != SOCKET_ERROR);
#endif
}
int zmq::ctx_t::term ()
{
// First send stop command to sockets so that any
// blocking calls are interrupted.
for (sockets_t::size_type i = 0; i != sockets.size (); i++)
sockets [i]->stop ();
// Find out whether there are any open sockets to care about.
// If so, sleep till they are closed. Note that we can use
// no_sockets_notify safely out of the critical section as once set
// its value is never changed again.
slot_sync.lock ();
if (!sockets.empty ())
no_sockets_notify = true;
slot_sync.unlock ();
if (no_sockets_notify)
no_sockets_sync.wait ();
// At this point there's only one application thread (this one) remaining.
// We don't even have to synchronise access to data.
zmq_assert (sockets.empty ());
// TODO: We are accessing the list of zombies in unsynchronised manner here!
// Get rid of remaining zombie sockets.
while (!zombies.empty ()) {
dezombify ();
// Sleep for 1ms not to end up busy-looping in the case the I/O threads
// are still busy sending data. We can possibly add a grand poll here
// (polling for fds associated with all the zombie sockets), but it's
// probably not worth of implementing it.
#if defined ZMQ_HAVE_WINDOWS
Sleep (1);
#else
usleep (1000);
#endif
}
// Deallocate the resources.
delete this;
return 0;
}
zmq::socket_base_t *zmq::ctx_t::create_socket (int type_)
{
slot_sync.lock ();
// Free the slots, if possible.
dezombify ();
// If max_sockets limit was reached, return error.
if (empty_slots.empty ()) {
slot_sync.unlock ();
errno = EMFILE;
return NULL;
}
// Choose a slot for the socket.
uint32_t slot = empty_slots.back ();
empty_slots.pop_back ();
// Create the socket and register its signaler.
socket_base_t *s = socket_base_t::create (type_, this, slot);
if (!s) {
empty_slots.push_back (slot);
slot_sync.unlock ();
return NULL;
}
sockets.push_back (s);
slots [slot] = s->get_signaler ();
slot_sync.unlock ();
return s;
}
void zmq::ctx_t::zombify_socket (socket_base_t *socket_)
{
// Zombification of socket basically means that its ownership is tranferred
// from the application that created it to the context.
// Note that the lock provides the memory barrier needed to migrate
// zombie-to-be socket from it's native thread to shared data area
// synchronised by slot_sync.
slot_sync.lock ();
sockets.erase (socket_);
zombies.push_back (socket_);
// Try to get rid of at least some zombie sockets at this point.
dezombify ();
// If shutdown thread is interested in notification about no more
// open sockets, notify it now.
if (sockets.empty () && no_sockets_notify)
no_sockets_sync.post ();
slot_sync.unlock ();
}
void zmq::ctx_t::send_command (uint32_t slot_, const command_t &command_)
{
slots [slot_]->send (command_);
}
bool zmq::ctx_t::recv_command (uint32_t slot_, command_t *command_, bool block_)
{
return slots [slot_]->recv (command_, block_);
}
zmq::io_thread_t *zmq::ctx_t::choose_io_thread (uint64_t affinity_)
{
// Find the I/O thread with minimum load.
zmq_assert (io_threads.size () > 0);
int min_load = -1;
io_threads_t::size_type result = 0;
for (io_threads_t::size_type i = 0; i != io_threads.size (); i++) {
if (!affinity_ || (affinity_ & (uint64_t (1) << i))) {
int load = io_threads [i]->get_load ();
if (min_load == -1 || load < min_load) {
min_load = load;
result = i;
}
}
}
zmq_assert (min_load != -1);
return io_threads [result];
}
int zmq::ctx_t::register_endpoint (const char *addr_,
socket_base_t *socket_)
{
endpoints_sync.lock ();
bool inserted = endpoints.insert (std::make_pair (std::string (addr_),
socket_)).second;
if (!inserted) {
errno = EADDRINUSE;
endpoints_sync.unlock ();
return -1;
}
endpoints_sync.unlock ();
return 0;
}
void zmq::ctx_t::unregister_endpoints (socket_base_t *socket_)
{
endpoints_sync.lock ();
endpoints_t::iterator it = endpoints.begin ();
while (it != endpoints.end ()) {
if (it->second == socket_) {
endpoints_t::iterator to_erase = it;
it++;
endpoints.erase (to_erase);
continue;
}
it++;
}
endpoints_sync.unlock ();
}
zmq::socket_base_t *zmq::ctx_t::find_endpoint (const char *addr_)
{
endpoints_sync.lock ();
endpoints_t::iterator it = endpoints.find (addr_);
if (it == endpoints.end ()) {
endpoints_sync.unlock ();
errno = ECONNREFUSED;
return NULL;
}
socket_base_t *endpoint = it->second;
// Increment the command sequence number of the peer so that it won't
// get deallocated until "bind" command is issued by the caller.
// The subsequent 'bind' has to be called with inc_seqnum parameter
// set to false, so that the seqnum isn't incremented twice.
endpoint->inc_seqnum ();
endpoints_sync.unlock ();
return endpoint;
}
void zmq::ctx_t::dezombify ()
{
// Try to dezombify each zombie in the list. Note that caller is
// responsible for calling this method in the slot_sync critical section.
for (zombies_t::size_type i = 0; i != zombies.size ();)
if (zombies [i]->dezombify ()) {
empty_slots.push_back (zombies [i]->get_slot ());
zombies.erase (zombies [i]);
}
else
i++;
}