/*
Copyright (c) 2007-2010 iMatix Corporation
This file is part of 0MQ.
0MQ is free software; you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
0MQ is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program. If not, see .
*/
#include
#include
#include "ctx.hpp"
#include "socket_base.hpp"
#include "io_thread.hpp"
#include "platform.hpp"
#include "reaper.hpp"
#include "err.hpp"
#include "pipe.hpp"
#if defined ZMQ_HAVE_WINDOWS
#include "windows.h"
#else
#include "unistd.h"
#endif
zmq::ctx_t::ctx_t (uint32_t io_threads_) :
terminating (false)
{
int rc;
// Initialise the array of mailboxes. Additional three slots are for
// internal log socket and the zmq_term thread the reaper thread.
slot_count = max_sockets + io_threads_ + 3;
slots = (mailbox_t**) malloc (sizeof (mailbox_t*) * slot_count);
alloc_assert (slots);
// Initialise the infrastructure for zmq_term thread.
slots [term_tid] = &term_mailbox;
// Create the reaper thread.
reaper = new (std::nothrow) reaper_t (this, reaper_tid);
alloc_assert (reaper);
slots [reaper_tid] = reaper->get_mailbox ();
reaper->start ();
// Create I/O thread objects and launch them.
for (uint32_t i = 2; i != io_threads_ + 2; i++) {
io_thread_t *io_thread = new (std::nothrow) io_thread_t (this, i);
alloc_assert (io_thread);
io_threads.push_back (io_thread);
slots [i] = io_thread->get_mailbox ();
io_thread->start ();
}
// In the unused part of the slot array, create a list of empty slots.
for (int32_t i = (int32_t) slot_count - 1;
i >= (int32_t) io_threads_ + 2; i--) {
empty_slots.push_back (i);
slots [i] = NULL;
}
// Create the logging infrastructure.
log_socket = create_socket (ZMQ_PUB);
zmq_assert (log_socket);
rc = log_socket->bind ("sys://log");
zmq_assert (rc == 0);
}
zmq::ctx_t::~ctx_t ()
{
// Check that there are no remaining sockets.
zmq_assert (sockets.empty ());
// Ask I/O threads to terminate. If stop signal wasn't sent to I/O
// thread subsequent invocation of destructor would hang-up.
for (io_threads_t::size_type i = 0; i != io_threads.size (); i++)
io_threads [i]->stop ();
// Wait till I/O threads actually terminate.
for (io_threads_t::size_type i = 0; i != io_threads.size (); i++)
delete io_threads [i];
// Deallocate the reaper thread object.
delete reaper;
// Deallocate the array of mailboxes. No special work is
// needed as mailboxes themselves were deallocated with their
// corresponding io_thread/socket objects.
free (slots);
}
int zmq::ctx_t::terminate ()
{
// Check whether termination was already underway, but interrupted and now
// restarted.
slot_sync.lock ();
bool restarted = terminating;
slot_sync.unlock ();
// First attempt to terminate the context.
if (!restarted) {
// Close the logging infrastructure.
log_sync.lock ();
int rc = log_socket->close ();
zmq_assert (rc == 0);
log_socket = NULL;
log_sync.unlock ();
// First send stop command to sockets so that any blocking calls can be
// interrupted. If there are no sockets we can ask reaper thread to stop.
slot_sync.lock ();
terminating = true;
for (sockets_t::size_type i = 0; i != sockets.size (); i++)
sockets [i]->stop ();
if (sockets.empty ())
reaper->stop ();
slot_sync.unlock ();
}
// Wait till reaper thread closes all the sockets.
command_t cmd;
int rc = term_mailbox.recv (&cmd, true);
if (rc == -1 && errno == EINTR)
return -1;
zmq_assert (rc == 0);
zmq_assert (cmd.type == command_t::done);
slot_sync.lock ();
zmq_assert (sockets.empty ());
slot_sync.unlock ();
// Deallocate the resources.
delete this;
return 0;
}
zmq::socket_base_t *zmq::ctx_t::create_socket (int type_)
{
slot_sync.lock ();
// Once zmq_term() was called, we can't create new sockets.
if (terminating) {
slot_sync.unlock ();
errno = ETERM;
return NULL;
}
// If max_sockets limit was reached, return error.
if (empty_slots.empty ()) {
slot_sync.unlock ();
errno = EMFILE;
return NULL;
}
// Choose a slot for the socket.
uint32_t slot = empty_slots.back ();
empty_slots.pop_back ();
// Create the socket and register its mailbox.
socket_base_t *s = socket_base_t::create (type_, this, slot);
if (!s) {
empty_slots.push_back (slot);
slot_sync.unlock ();
return NULL;
}
sockets.push_back (s);
slots [slot] = s->get_mailbox ();
slot_sync.unlock ();
return s;
}
void zmq::ctx_t::destroy_socket (class socket_base_t *socket_)
{
slot_sync.lock ();
// Free the associared thread slot.
uint32_t tid = socket_->get_tid ();
empty_slots.push_back (tid);
slots [tid] = NULL;
// Remove the socket from the list of sockets.
sockets.erase (socket_);
// If zmq_term() was already called and there are no more socket
// we can ask reaper thread to terminate.
if (terminating && sockets.empty ())
reaper->stop ();
slot_sync.unlock ();
}
zmq::object_t *zmq::ctx_t::get_reaper ()
{
return reaper;
}
void zmq::ctx_t::send_command (uint32_t tid_, const command_t &command_)
{
slots [tid_]->send (command_);
}
zmq::io_thread_t *zmq::ctx_t::choose_io_thread (uint64_t affinity_)
{
if (io_threads.empty ())
return NULL;
// Find the I/O thread with minimum load.
int min_load = -1;
io_threads_t::size_type result = 0;
for (io_threads_t::size_type i = 0; i != io_threads.size (); i++) {
if (!affinity_ || (affinity_ & (uint64_t (1) << i))) {
int load = io_threads [i]->get_load ();
if (min_load == -1 || load < min_load) {
min_load = load;
result = i;
}
}
}
zmq_assert (min_load != -1);
return io_threads [result];
}
int zmq::ctx_t::register_endpoint (const char *addr_, endpoint_t &endpoint_)
{
endpoints_sync.lock ();
bool inserted = endpoints.insert (endpoints_t::value_type (
std::string (addr_), endpoint_)).second;
if (!inserted) {
errno = EADDRINUSE;
endpoints_sync.unlock ();
return -1;
}
endpoints_sync.unlock ();
return 0;
}
void zmq::ctx_t::unregister_endpoints (socket_base_t *socket_)
{
endpoints_sync.lock ();
endpoints_t::iterator it = endpoints.begin ();
while (it != endpoints.end ()) {
if (it->second.socket == socket_) {
endpoints_t::iterator to_erase = it;
++it;
endpoints.erase (to_erase);
continue;
}
++it;
}
endpoints_sync.unlock ();
}
zmq::endpoint_t zmq::ctx_t::find_endpoint (const char *addr_)
{
endpoints_sync.lock ();
endpoints_t::iterator it = endpoints.find (addr_);
if (it == endpoints.end ()) {
endpoints_sync.unlock ();
errno = ECONNREFUSED;
endpoint_t empty = {NULL, options_t()};
return empty;
}
endpoint_t *endpoint = &it->second;
// Increment the command sequence number of the peer so that it won't
// get deallocated until "bind" command is issued by the caller.
// The subsequent 'bind' has to be called with inc_seqnum parameter
// set to false, so that the seqnum isn't incremented twice.
endpoint->socket->inc_seqnum ();
endpoints_sync.unlock ();
return *endpoint;
}
void zmq::ctx_t::log (const char *format_, va_list args_)
{
// Create the log message.
zmq_msg_t msg;
int rc = zmq_msg_init_size (&msg, strlen (format_) + 1);
zmq_assert (rc == 0);
memcpy (zmq_msg_data (&msg), format_, zmq_msg_size (&msg));
// At this point we migrate the log socket to the current thread.
// We rely on mutex for executing the memory barrier.
log_sync.lock ();
if (log_socket)
log_socket->send (&msg, 0);
log_sync.unlock ();
zmq_msg_close (&msg);
}