/*
Copyright (c) 2009-2012 250bpm s.r.o.
Copyright (c) 2007-2011 iMatix Corporation
Copyright (c) 2007-2011 Other contributors as noted in the AUTHORS file
This file is part of Crossroads project.
Crossroads is free software; you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
Crossroads is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program. If not, see .
*/
#include "platform.hpp"
#if defined XS_HAVE_WINDOWS
#include "windows.hpp"
#else
#include
#endif
#include
#include
#include "ctx.hpp"
#include "socket_base.hpp"
#include "io_thread.hpp"
#include "monitor.hpp"
#include "reaper.hpp"
#include "pipe.hpp"
#include "err.hpp"
#include "msg.hpp"
xs::ctx_t::ctx_t (uint32_t io_threads_) :
tag (0xbadcafe0),
starting (true),
terminating (false),
max_sockets (512),
io_thread_count (io_threads_),
reentrant (false)
{
}
bool xs::ctx_t::check_tag ()
{
return tag == 0xbadcafe0;
}
xs::ctx_t::~ctx_t ()
{
// Check that there are no remaining sockets.
xs_assert (sockets.empty ());
// Ask I/O threads to terminate. If stop signal wasn't sent to I/O
// thread subsequent invocation of destructor would hang-up.
for (io_threads_t::size_type i = 0; i != io_threads.size (); i++)
io_threads [i]->stop ();
// Wait till I/O threads actually terminate.
for (io_threads_t::size_type i = 0; i != io_threads.size (); i++)
delete io_threads [i];
// Deallocate the reaper thread object.
delete reaper;
// Deallocate the array of mailboxes. No special work is
// needed as mailboxes themselves were deallocated with their
// corresponding io_thread/socket objects.
free (slots);
// Remove the tag, so that the object is considered dead.
tag = 0xdeadbeef;
}
int xs::ctx_t::terminate ()
{
if (!starting) {
// Check whether termination was already underway, but interrupted and now
// restarted.
slot_sync.lock ();
bool restarted = terminating;
terminating = true;
slot_sync.unlock ();
// First attempt to terminate the context.
if (!restarted) {
// Close the monitor object. Wait for done command from the monitor.
monitor->stop ();
command_t cmd;
int rc = term_mailbox.recv (&cmd, -1);
xs_assert (rc == 0);
xs_assert (cmd.type == command_t::done);
// Close the logging socket.
log_sync.lock ();
rc = log_socket->close ();
xs_assert (rc == 0);
log_socket = NULL;
log_sync.unlock ();
// First send stop command to sockets so that any blocking calls
// can be interrupted. If there are no sockets we can ask reaper
// thread to stop.
slot_sync.lock ();
for (sockets_t::size_type i = 0; i != sockets.size (); i++)
sockets [i]->stop ();
if (sockets.empty ())
reaper->stop ();
slot_sync.unlock ();
}
// Wait till reaper thread closes all the sockets.
command_t cmd;
int rc = term_mailbox.recv (&cmd, -1);
if (rc == -1 && errno == EINTR)
return -1;
xs_assert (rc == 0);
xs_assert (cmd.type == command_t::done);
slot_sync.lock ();
xs_assert (sockets.empty ());
slot_sync.unlock ();
}
// Deallocate the resources.
delete this;
return 0;
}
int xs::ctx_t::setctxopt (int option_, const void *optval_, size_t optvallen_)
{
switch (option_) {
case XS_CTX_MAX_SOCKETS:
if (optvallen_ != sizeof (int) || *((int*) optval_) < 0) {
errno = EINVAL;
return -1;
}
opt_sync.lock ();
max_sockets = *((int*) optval_);
opt_sync.unlock ();
break;
case XS_CTX_REENTRANT:
if (optvallen_ != sizeof (int) || (*((int*) optval_) != 0 &&
*((int*) optval_) != 1)) {
errno = EINVAL;
return -1;
}
opt_sync.lock ();
reentrant = (*((int*) optval_) ? true : false);
opt_sync.unlock ();
break;
default:
errno = EINVAL;
return -1;
}
return 0;
}
xs::socket_base_t *xs::ctx_t::create_socket (int type_)
{
if (unlikely (starting)) {
starting = false;
// Initialise the array of mailboxes. Additional three slots are for
// xs_term thread and reaper thread.
opt_sync.lock ();
int maxs = max_sockets;
opt_sync.unlock ();
slot_count = maxs + io_thread_count + 3;
slots = (mailbox_t**) malloc (sizeof (mailbox_t*) * slot_count);
alloc_assert (slots);
// Initialise the infrastructure for xs_term thread.
slots [term_tid] = &term_mailbox;
// Create the reaper thread.
reaper = new (std::nothrow) reaper_t (this, reaper_tid);
alloc_assert (reaper);
slots [reaper_tid] = reaper->get_mailbox ();
reaper->start ();
// Create I/O thread objects and launch them.
for (uint32_t i = 2; i != io_thread_count + 2; i++) {
io_thread_t *io_thread = new (std::nothrow) io_thread_t (this, i);
alloc_assert (io_thread);
io_threads.push_back (io_thread);
slots [i] = io_thread->get_mailbox ();
io_thread->start ();
}
// In the unused part of the slot array, create a list of empty slots.
for (int32_t i = (int32_t) slot_count - 1;
i >= (int32_t) io_thread_count + 2; i--) {
empty_slots.push_back (i);
slots [i] = NULL;
}
// Create the socket to send logs to.
log_socket = create_socket (XS_PUB);
xs_assert (log_socket);
int linger = 0;
int rc = log_socket->setsockopt (XS_LINGER, &linger, sizeof (linger));
errno_assert (rc == 0);
int hwm = 1;
rc = log_socket->setsockopt (XS_SNDHWM, &hwm, sizeof (hwm));
errno_assert (rc == 0);
#if !defined XS_HAVE_WINDOWS
rc = log_socket->connect ("ipc:///tmp/xslogs.ipc");
errno_assert (rc == 0);
#endif
// Create the monitor object.
io_thread_t *io_thread = choose_io_thread (0);
xs_assert (io_thread);
monitor = new (std::nothrow) monitor_t (io_thread);
alloc_assert (monitor);
monitor->start ();
}
slot_sync.lock ();
// Once xs_term() was called, we can't create new sockets.
if (terminating) {
slot_sync.unlock ();
errno = ETERM;
return NULL;
}
// If max_sockets limit was reached, return error.
if (empty_slots.empty ()) {
slot_sync.unlock ();
errno = EMFILE;
return NULL;
}
// Choose a slot for the socket.
uint32_t slot = empty_slots.back ();
empty_slots.pop_back ();
// Generate new unique socket ID.
int sid = ((int) max_socket_id.add (1)) + 1;
// Create the socket and register its mailbox.
socket_base_t *s = socket_base_t::create (type_, this, slot, sid);
if (!s) {
empty_slots.push_back (slot);
slot_sync.unlock ();
return NULL;
}
sockets.push_back (s);
slots [slot] = s->get_mailbox ();
slot_sync.unlock ();
return s;
}
void xs::ctx_t::destroy_socket (class socket_base_t *socket_)
{
slot_sync.lock ();
// Free the associared thread slot.
uint32_t tid = socket_->get_tid ();
empty_slots.push_back (tid);
slots [tid] = NULL;
// Remove the socket from the list of sockets.
sockets.erase (socket_);
// If xs_term() was already called and there are no more socket
// we can ask reaper thread to terminate.
if (terminating && sockets.empty ())
reaper->stop ();
slot_sync.unlock ();
}
xs::object_t *xs::ctx_t::get_reaper ()
{
return reaper;
}
void xs::ctx_t::send_command (uint32_t tid_, const command_t &command_)
{
slots [tid_]->send (command_);
}
xs::io_thread_t *xs::ctx_t::choose_io_thread (uint64_t affinity_)
{
if (io_threads.empty ())
return NULL;
// Find the I/O thread with minimum load.
int min_load = -1;
io_threads_t::size_type result = 0;
for (io_threads_t::size_type i = 0; i != io_threads.size (); i++) {
if (!affinity_ || (affinity_ & (uint64_t (1) << i))) {
int load = io_threads [i]->get_load ();
if (min_load == -1 || load < min_load) {
min_load = load;
result = i;
}
}
}
xs_assert (min_load != -1);
return io_threads [result];
}
int xs::ctx_t::register_endpoint (const char *addr_, endpoint_t &endpoint_)
{
endpoints_sync.lock ();
bool inserted = endpoints.insert (endpoints_t::value_type (
std::string (addr_), endpoint_)).second;
if (!inserted) {
errno = EADDRINUSE;
endpoints_sync.unlock ();
return -1;
}
endpoints_sync.unlock ();
return 0;
}
void xs::ctx_t::unregister_endpoints (socket_base_t *socket_)
{
endpoints_sync.lock ();
endpoints_t::iterator it = endpoints.begin ();
while (it != endpoints.end ()) {
if (it->second.socket == socket_) {
endpoints_t::iterator to_erase = it;
++it;
endpoints.erase (to_erase);
continue;
}
++it;
}
endpoints_sync.unlock ();
}
xs::endpoint_t xs::ctx_t::find_endpoint (const char *addr_)
{
endpoints_sync.lock ();
endpoints_t::iterator it = endpoints.find (addr_);
if (it == endpoints.end ()) {
endpoints_sync.unlock ();
errno = ECONNREFUSED;
endpoint_t empty = {NULL, options_t()};
return empty;
}
endpoint_t *endpoint = &it->second;
// Increment the command sequence number of the peer so that it won't
// get deallocated until "bind" command is issued by the caller.
// The subsequent 'bind' has to be called with inc_seqnum parameter
// set to false, so that the seqnum isn't incremented twice.
endpoint->socket->inc_seqnum ();
endpoints_sync.unlock ();
return *endpoint;
}
void xs::ctx_t::log (int sid_, const char *text_)
{
monitor->log (sid_, text_);
}
void xs::ctx_t::publish_logs (const char *text_)
{
log_sync.lock ();
msg_t msg;
msg.init_size (strlen (text_) + 1);
memcpy (msg.data (), text_, strlen (text_) + 1);
int rc = log_socket->send (&msg, XS_DONTWAIT);
errno_assert (rc == 0);
msg.close ();
log_sync.unlock ();
}
bool xs::ctx_t::is_reentrant ()
{
opt_sync.lock ();
bool ret = reentrant;
opt_sync.unlock ();
return ret;
}
// The last used socket ID, or 0 if no socket was used so far. Note that this
// is a global variable. Thus, even sockets created in different contexts have
// unique IDs.
xs::atomic_counter_t xs::ctx_t::max_socket_id;