/* Copyright (c) 2009-2012 250bpm s.r.o. Copyright (c) 2007-2011 iMatix Corporation Copyright (c) 2007-2011 Other contributors as noted in the AUTHORS file This file is part of Crossroads I/O project. Crossroads I/O is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. Crossroads is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this program. If not, see . */ #include "platform.hpp" #if defined XS_HAVE_WINDOWS #include "windows.hpp" #else #include #endif #include #include #include "ctx.hpp" #include "socket_base.hpp" #include "monitor.hpp" #include "reaper.hpp" #include "pipe.hpp" #include "err.hpp" #include "msg.hpp" xs::ctx_t::ctx_t () : tag (0xbadcafe0), starting (true), terminating (false), reaper (NULL), slot_count (0), slots (NULL), monitor (NULL), log_socket (NULL), max_sockets (512), io_thread_count (1) { } bool xs::ctx_t::check_tag () { return tag == 0xbadcafe0; } xs::ctx_t::~ctx_t () { // Check that there are no remaining sockets. xs_assert (sockets.empty ()); // Ask I/O threads to terminate. If stop signal wasn't sent to I/O // thread subsequent invocation of destructor would hang-up. for (io_threads_t::size_type i = 0; i != io_threads.size (); i++) io_threads [i]->stop (); // Wait till I/O threads actually terminate. for (io_threads_t::size_type i = 0; i != io_threads.size (); i++) delete io_threads [i]; // Deallocate the reaper thread object. if (reaper) delete reaper; // Deallocate the array of mailboxes. No special work is // needed as mailboxes themselves were deallocated with their // corresponding io_thread/socket objects. if (slots) free (slots); // Remove the tag, so that the object is considered dead. tag = 0xdeadbeef; } int xs::ctx_t::terminate () { if (!starting) { // Check whether termination was already underway, but interrupted and now // restarted. slot_sync.lock (); bool restarted = terminating; terminating = true; slot_sync.unlock (); // First attempt to terminate the context. if (!restarted) { // Close the monitor object. Wait for done command from the monitor. monitor->stop (); command_t cmd; int rc = term_mailbox.recv (&cmd, -1); xs_assert (rc == 0); xs_assert (cmd.type == command_t::done); // Close the logging socket. log_sync.lock (); rc = log_socket->close (); xs_assert (rc == 0); log_socket = NULL; log_sync.unlock (); // First send stop command to sockets so that any blocking calls // can be interrupted. If there are no sockets we can ask reaper // thread to stop. slot_sync.lock (); for (sockets_t::size_type i = 0; i != sockets.size (); i++) sockets [i]->stop (); if (sockets.empty ()) reaper->stop (); slot_sync.unlock (); } // Wait till reaper thread closes all the sockets. command_t cmd; int rc = term_mailbox.recv (&cmd, -1); if (rc == -1 && errno == EINTR) return -1; xs_assert (rc == 0); xs_assert (cmd.type == command_t::done); slot_sync.lock (); xs_assert (sockets.empty ()); slot_sync.unlock (); } // Deallocate the resources. delete this; return 0; } int xs::ctx_t::setctxopt (int option_, const void *optval_, size_t optvallen_) { switch (option_) { case XS_MAX_SOCKETS: if (optvallen_ != sizeof (int) || *((int*) optval_) < 0) { errno = EINVAL; return -1; } opt_sync.lock (); max_sockets = *((int*) optval_); opt_sync.unlock (); break; case XS_IO_THREADS: if (optvallen_ != sizeof (int) || *((int*) optval_) < 1) { errno = EINVAL; return -1; } opt_sync.lock (); io_thread_count = *((int*) optval_); opt_sync.unlock (); break; default: errno = EINVAL; return -1; } return 0; } xs::socket_base_t *xs::ctx_t::create_socket (int type_) { if (unlikely (starting)) { starting = false; // Initialise the array of mailboxes. Additional three slots are for // xs_term thread and reaper thread. opt_sync.lock (); int maxs = max_sockets; int ios = io_thread_count; opt_sync.unlock (); slot_count = maxs + ios + 3; slots = (mailbox_t**) malloc (sizeof (mailbox_t*) * slot_count); alloc_assert (slots); // Initialise the infrastructure for xs_term thread. slots [term_tid] = &term_mailbox; // Create the reaper thread. reaper = new (std::nothrow) reaper_t (this, reaper_tid); alloc_assert (reaper); slots [reaper_tid] = reaper->get_mailbox (); reaper->start (); // Create I/O thread objects and launch them. for (int i = 2; i != ios + 2; i++) { io_thread_t *io_thread = io_thread_t::create (this, i); errno_assert (io_thread); io_threads.push_back (io_thread); slots [i] = io_thread->get_mailbox (); io_thread->start (); } // In the unused part of the slot array, create a list of empty slots. for (int32_t i = (int32_t) slot_count - 1; i >= (int32_t) ios + 2; i--) { empty_slots.push_back (i); slots [i] = NULL; } // Create the socket to send logs to. log_socket = create_socket (XS_PUB); xs_assert (log_socket); int linger = 0; int rc = log_socket->setsockopt (XS_LINGER, &linger, sizeof (linger)); errno_assert (rc == 0); int hwm = 1; rc = log_socket->setsockopt (XS_SNDHWM, &hwm, sizeof (hwm)); errno_assert (rc == 0); // Create the monitor object. io_thread_t *io_thread = choose_io_thread (0); xs_assert (io_thread); monitor = new (std::nothrow) monitor_t (io_thread); alloc_assert (monitor); monitor->start (); } slot_sync.lock (); // Once xs_term() was called, we can't create new sockets. if (terminating) { slot_sync.unlock (); errno = ETERM; return NULL; } // If max_sockets limit was reached, return error. if (empty_slots.empty ()) { slot_sync.unlock (); errno = EMFILE; return NULL; } // Choose a slot for the socket. uint32_t slot = empty_slots.back (); empty_slots.pop_back (); // Generate new unique socket ID. int sid = ((int) max_socket_id.add (1)) + 1; // Create the socket and register its mailbox. socket_base_t *s = socket_base_t::create (type_, this, slot, sid); if (!s) { empty_slots.push_back (slot); slot_sync.unlock (); return NULL; } sockets.push_back (s); slots [slot] = s->get_mailbox (); slot_sync.unlock (); return s; } void xs::ctx_t::destroy_socket (class socket_base_t *socket_) { slot_sync.lock (); // Free the associared thread slot. uint32_t tid = socket_->get_tid (); empty_slots.push_back (tid); slots [tid] = NULL; // Remove the socket from the list of sockets. sockets.erase (socket_); // If xs_term() was already called and there are no more socket // we can ask reaper thread to terminate. if (terminating && sockets.empty ()) reaper->stop (); slot_sync.unlock (); } xs::object_t *xs::ctx_t::get_reaper () { return reaper; } void xs::ctx_t::send_command (uint32_t tid_, const command_t &command_) { slots [tid_]->send (command_); } xs::io_thread_t *xs::ctx_t::choose_io_thread (uint64_t affinity_) { if (io_threads.empty ()) return NULL; // Find the I/O thread with minimum load. int min_load = -1; io_threads_t::size_type result = 0; for (io_threads_t::size_type i = 0; i != io_threads.size (); i++) { if (!affinity_ || (affinity_ & (uint64_t (1) << i))) { int load = io_threads [i]->get_load (); if (min_load == -1 || load < min_load) { min_load = load; result = i; } } } xs_assert (min_load != -1); return io_threads [result]; } int xs::ctx_t::register_endpoint (const char *addr_, endpoint_t &endpoint_) { endpoints_sync.lock (); bool inserted = endpoints.insert (endpoints_t::value_type ( std::string (addr_), endpoint_)).second; if (!inserted) { errno = EADDRINUSE; endpoints_sync.unlock (); return -1; } endpoints_sync.unlock (); return 0; } void xs::ctx_t::unregister_endpoints (socket_base_t *socket_) { endpoints_sync.lock (); endpoints_t::iterator it = endpoints.begin (); while (it != endpoints.end ()) { if (it->second.socket == socket_) { endpoints_t::iterator to_erase = it; ++it; endpoints.erase (to_erase); continue; } ++it; } endpoints_sync.unlock (); } xs::endpoint_t xs::ctx_t::find_endpoint (const char *addr_) { endpoints_sync.lock (); endpoints_t::iterator it = endpoints.find (addr_); if (it == endpoints.end ()) { endpoints_sync.unlock (); errno = ECONNREFUSED; endpoint_t empty = {NULL, options_t()}; return empty; } endpoint_t *endpoint = &it->second; // Increment the command sequence number of the peer so that it won't // get deallocated until "bind" command is issued by the caller. // The subsequent 'bind' has to be called with inc_seqnum parameter // set to false, so that the seqnum isn't incremented twice. endpoint->socket->inc_seqnum (); endpoints_sync.unlock (); return *endpoint; } void xs::ctx_t::log (int sid_, const char *text_) { monitor->log (sid_, text_); } void xs::ctx_t::publish_logs (const char *text_) { log_sync.lock (); msg_t msg; msg.init_size (strlen (text_) + 1); memcpy (msg.data (), text_, strlen (text_) + 1); int rc = log_socket->send (&msg, XS_DONTWAIT); errno_assert (rc == 0); msg.close (); log_sync.unlock (); } // The last used socket ID, or 0 if no socket was used so far. Note that this // is a global variable. Thus, even sockets created in different contexts have // unique IDs. xs::atomic_counter_t xs::ctx_t::max_socket_id;