/*
Copyright (c) 2007-2009 FastMQ Inc.
This file is part of 0MQ.
0MQ is free software; you can redistribute it and/or modify it under
the terms of the Lesser GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
0MQ is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Lesser GNU General Public License for more details.
You should have received a copy of the Lesser GNU General Public License
along with this program. If not, see .
*/
#include "platform.hpp"
#if defined ZMQ_HAVE_OPENPGM
#ifdef ZMQ_HAVE_LINUX
#include
#else
#include
#include
#include
#endif
#include
#include
#include "options.hpp"
#include "pgm_socket.hpp"
#include "config.hpp"
#include "err.hpp"
//#define PGM_SOCKET_DEBUG
//#define PGM_SOCKET_DEBUG_LEVEL 1
// level 1 = key behaviour
// level 2 = processing flow
// level 4 = infos
#ifndef PGM_SOCKET_DEBUG
# define zmq_log(n, ...) while (0)
#else
# define zmq_log(n, ...) do { if ((n) <= PGM_SOCKET_DEBUG_LEVEL) \
{ printf (__VA_ARGS__);}} while (0)
#endif
#ifdef ZMQ_HAVE_LINUX
zmq::pgm_socket_t::pgm_socket_t (bool receiver_, const options_t &options_) :
g_transport (NULL),
options (options_),
receiver (receiver_),
port_number (0),
udp_encapsulation (false),
pgm_msgv (NULL),
nbytes_rec (0),
nbytes_processed (0),
pgm_msgv_processed (0),
pgm_msgv_len (0)
{
}
int zmq::pgm_socket_t::init (const char *network_)
{
// Check if we are encapsulating into UDP, natwork string has to
// start with udp:.
const char *network_ptr = network_;
if (strlen (network_) >= 4 && network_ [0] == 'u' &&
network_ [1] == 'd' && network_ [2] == 'p' &&
network_ [3] == ':') {
// Shift interface_ptr after ':'.
network_ptr += 4;
udp_encapsulation = true;
}
// Parse port number.
const char *port_delim = strchr (network_ptr, ':');
if (!port_delim) {
errno = EINVAL;
return -1;
}
port_number = atoi (port_delim + 1);
// Store interface string.
if (port_delim <= network_ptr) {
errno = EINVAL;
return -1;
}
if (port_delim - network_ptr >= (int) sizeof (network) - 1) {
errno = EINVAL;
return -1;
}
memset (network, '\0', sizeof (network));
memcpy (network, network_ptr, port_delim - network_ptr);
zmq_log (1, "parsed: network %s, port %i, udp encaps. %s, %s(%i)\n",
network, port_number, udp_encapsulation ? "yes" : "no",
__FILE__, __LINE__);
// Open PGM transport.
int rc = open_transport ();
if (rc != 0)
return -1;
// For receiver transport preallocate pgm_msgv array.
// in_batch_size configured in confing.hpp
if (receiver) {
pgm_msgv_len = get_max_apdu_at_once (in_batch_size);
pgm_msgv = new pgm_msgv_t [pgm_msgv_len];
}
return 0;
}
int zmq::pgm_socket_t::open_transport (void)
{
zmq_log (1, "Opening PGM: network %s, port %i, udp encaps. %s, %s(%i)\n",
network, port_number, udp_encapsulation ? "yes" : "no",
__FILE__, __LINE__);
// Can not open transport before destroying old one.
zmq_assert (g_transport == NULL);
// Set actual_tsi and prev_tsi to zeros.
memset (&tsi, '\0', sizeof (pgm_tsi_t));
memset (&retired_tsi, '\0', sizeof (pgm_tsi_t));
// Zero counter used in msgrecv.
nbytes_rec = 0;
nbytes_processed = 0;
pgm_msgv_processed = 0;
// Init PGM transport.
// Ensure threading enabled, ensure timer enabled and find PGM protocol id.
//
// Note that if you want to use gettimeofday and sleep for openPGM timing,
// set environment variables PGM_TIMER to "GTOD"
// and PGM_SLEEP to "USLEEP".
int rc = pgm_init ();
if (rc != 0) {
errno = EINVAL;
return -1;
}
// PGM transport GSI.
pgm_gsi_t gsi;
// PGM transport GSRs.
struct group_source_req recv_gsr, send_gsr;
size_t recv_gsr_len = 1;
rc = pgm_create_md5_gsi (&gsi);
if (rc != 0) {
errno = EINVAL;
return -1;
}
// On success, 0 is returned. On invalid arguments, -EINVAL is returned.
// If more multicast groups are found than the recv_len parameter,
// -ENOMEM is returned.
rc = pgm_if_parse_transport (network, AF_INET, &recv_gsr,
&recv_gsr_len, &send_gsr);
if (rc != 0) {
errno = EINVAL;
return -1;
}
if (recv_gsr_len != 1) {
errno = ENOMEM;
return -1;
}
// If we are using UDP encapsulation update send_gsr & recv_gsr
// structures. Note that send_gsr & recv_gsr has to be updated after
// pgm_if_parse_transport call.
if (udp_encapsulation) {
// Use the same port for UDP encapsulation.
((struct sockaddr_in*)&send_gsr.gsr_group)->sin_port =
g_htons (port_number);
((struct sockaddr_in*)&recv_gsr.gsr_group)->sin_port =
g_htons (port_number);
}
rc = pgm_transport_create (&g_transport, &gsi, 0, port_number, &recv_gsr,
1, &send_gsr);
if (rc != 0) {
return -1;
}
// Common parameters for receiver and sender.
// Set maximum transport protocol data unit size (TPDU).
rc = pgm_transport_set_max_tpdu (g_transport, pgm_max_tpdu);
if (rc != 0) {
errno = EINVAL;
return -1;
}
// Set maximum number of network hops to cross.
rc = pgm_transport_set_hops (g_transport, 16);
if (rc != 0) {
errno = EINVAL;
return -1;
}
// Receiver transport.
if (receiver) {
// Set transport->may_close_on_failure to true,
// after data los recvmsgv returns -1 errno set to ECONNRESET.
rc = pgm_transport_set_close_on_failure (g_transport, TRUE);
if (rc != 0) {
errno = EINVAL;
return -1;
}
// Set transport->can_send_data = FALSE.
// Note that NAKs are still generated by the transport.
rc = pgm_transport_set_recv_only (g_transport, false);
if (rc != 0) {
errno = EINVAL;
return -1;
}
// Set NAK transmit back-off interval [us].
rc = pgm_transport_set_nak_bo_ivl (g_transport, 50*1000);
if (rc != 0) {
errno = EINVAL;
return -1;
}
// Set timeout before repeating NAK [us].
rc = pgm_transport_set_nak_rpt_ivl (g_transport, 200*1000);
if (rc != 0) {
errno = EINVAL;
return -1;
}
// Set timeout for receiving RDATA.
rc = pgm_transport_set_nak_rdata_ivl (g_transport, 200*1000);
if (rc != 0) {
errno = EINVAL;
return -1;
}
// Set retries for NAK without NCF/DATA (NAK_DATA_RETRIES).
rc = pgm_transport_set_nak_data_retries (g_transport, 5);
if (rc != 0) {
errno = EINVAL;
return -1;
}
// Set retries for NCF after NAK (NAK_NCF_RETRIES).
rc = pgm_transport_set_nak_ncf_retries (g_transport, 2);
if (rc != 0) {
errno = EINVAL;
return -1;
}
// Set timeout for removing a dead peer [us].
rc = pgm_transport_set_peer_expiry (g_transport, 5*8192*1000);
if (rc != 0) {
errno = EINVAL;
return -1;
}
// Set expiration time of SPM Requests [us].
rc = pgm_transport_set_spmr_expiry (g_transport, 25*1000);
if (rc != 0) {
errno = EINVAL;
return -1;
}
// Set the size of the receive window.
//
// data rate [B/s] (options.rate is kb/s).
if (options.rate <= 0) {
errno = EINVAL;
return -1;
}
rc = pgm_transport_set_rxw_max_rte (g_transport,
options.rate * 1000 / 8);
if (rc != 0) {
errno = EINVAL;
return -1;
}
// Recovery interval [s].
if (options.recovery_ivl <= 0) {
errno = EINVAL;
return -1;
}
rc = pgm_transport_set_rxw_secs (g_transport, options.recovery_ivl);
if (rc != 0) {
errno = EINVAL;
return -1;
}
// Sender transport.
} else {
// Set transport->can_recv = FALSE, waiting_pipe wont not be read.
rc = pgm_transport_set_send_only (g_transport, TRUE);
if (rc != 0) {
errno = EINVAL;
return -1;
}
// Set the size of the send window.
//
// data rate [B/s] (options.rate is kb/s).
if (options.rate <= 0) {
errno = EINVAL;
return -1;
}
rc = pgm_transport_set_txw_max_rte (g_transport,
options.rate * 1000 / 8);
if (rc != 0) {
errno = EINVAL;
return -1;
}
// Recovery interval [s].
if (options.recovery_ivl <= 0) {
errno = EINVAL;
return -1;
}
rc = pgm_transport_set_txw_secs (g_transport, options.recovery_ivl);
if (rc != 0) {
errno = EINVAL;
return -1;
}
// Preallocate full transmit window. For simplification always
// worst case is used (40 bytes ipv6 header and 20 bytes UDP
// encapsulation).
int to_preallocate = options.recovery_ivl * (options.rate * 1000 / 8)
/ (pgm_max_tpdu - 40 - 20);
rc = pgm_transport_set_txw_preallocate (g_transport, to_preallocate);
if (rc != 0) {
errno = EINVAL;
return -1;
}
zmq_log (1, "Preallocated %i slices in TX window. %s(%i)\n",
to_preallocate, __FILE__, __LINE__);
// Set interval of background SPM packets [us].
rc = pgm_transport_set_ambient_spm (g_transport, 8192 * 1000);
if (rc != 0) {
errno = EINVAL;
return -1;
}
// Set intervals of data flushing SPM packets [us].
guint spm_heartbeat[] = {4 * 1000, 4 * 1000, 8 * 1000, 16 * 1000,
32 * 1000, 64 * 1000, 128 * 1000, 256 * 1000, 512 * 1000,
1024 * 1000, 2048 * 1000, 4096 * 1000, 8192 * 1000};
rc = pgm_transport_set_heartbeat_spm (g_transport, spm_heartbeat,
G_N_ELEMENTS(spm_heartbeat));
if (rc != 0) {
errno = EINVAL;
return -1;
}
}
// Enable multicast loopback.
if (options.use_multicast_loop) {
rc = pgm_transport_set_multicast_loop (g_transport, true);
if (rc != 0) {
errno = EINVAL;
return -1;
}
}
// Bind a transport to the specified network devices.
rc = pgm_transport_bind (g_transport);
if (rc != 0) {
return -1;
}
return 0;
}
zmq::pgm_socket_t::~pgm_socket_t ()
{
// Celanup.
if (pgm_msgv) {
delete [] pgm_msgv;
}
if (g_transport)
close_transport ();
}
void zmq::pgm_socket_t::close_transport (void)
{
// g_transport has to be valid.
zmq_assert (g_transport);
pgm_transport_destroy (g_transport, TRUE);
g_transport = NULL;
}
// Get receiver fds. recv_fd is from transport->recv_sock
// waiting_pipe_fd is from transport->waiting_pipe [0]
int zmq::pgm_socket_t::get_receiver_fds (int *recv_fd_,
int *waiting_pipe_fd_)
{
// For POLLIN there are 2 pollfds in pgm_transport.
int fds_array_size = pgm_receiver_fd_count;
pollfd *fds = new pollfd [fds_array_size];
memset (fds, '\0', fds_array_size * sizeof (fds));
// Retrieve pollfds from pgm_transport.
int rc = pgm_transport_poll_info (g_transport, fds, &fds_array_size,
POLLIN);
// pgm_transport_poll_info has to return 2 pollfds for POLLIN.
// Note that fds_array_size parameter can be
// changed inside pgm_transport_poll_info call.
zmq_assert (rc == pgm_receiver_fd_count);
// Store pfds into user allocated space.
*recv_fd_ = fds [0].fd;
*waiting_pipe_fd_ = fds [1].fd;
delete [] fds;
return pgm_receiver_fd_count;
}
// Get fds and store them into user allocated memory.
// sender_fd is from pgm_transport->send_sock.
// receive_fd_ is from transport->recv_sock.
int zmq::pgm_socket_t::get_sender_fds (int *send_fd_, int *receive_fd_)
{
// Preallocate pollfds array.
int fds_array_size = pgm_sender_fd_count;
pollfd *fds = new pollfd [fds_array_size];
memset (fds, '\0', fds_array_size * sizeof (fds));
// Retrieve pollfds from pgm_transport
int rc = pgm_transport_poll_info (g_transport, fds, &fds_array_size,
POLLOUT | POLLIN);
// pgm_transport_poll_info has to return one pollfds for POLLOUT and
// second for POLLIN.
// Note that fds_array_size parameter can be
// changed inside pgm_transport_poll_info call.
zmq_assert (rc == pgm_sender_fd_count);
// Store pfds into user allocated space.
*receive_fd_ = fds [0].fd;
*send_fd_ = fds [1].fd;
delete [] fds;
return pgm_sender_fd_count;
}
// Send one APDU, transmit window owned memory.
size_t zmq::pgm_socket_t::send (unsigned char *data_, size_t data_len_)
{
iovec iov = {data_,data_len_};
ssize_t nbytes = pgm_transport_send_packetv (g_transport, &iov, 1,
MSG_DONTWAIT | MSG_WAITALL, true);
zmq_assert (nbytes != -EINVAL);
if (nbytes == -1 && errno != EAGAIN) {
errno_assert (false);
}
// If nbytes is -1 and errno is EAGAIN means that we can not send data
// now. We have to call write_one_pkt again.
nbytes = nbytes == -1 ? 0 : nbytes;
zmq_log (4, "wrote %iB, %s(%i)\n", (int)nbytes, __FILE__, __LINE__);
// We have to write all data as one packet.
if (nbytes > 0) {
zmq_assert (nbytes == (ssize_t)data_len_);
}
return nbytes;
}
// Return max TSDU size without fragmentation from current PGM transport.
size_t zmq::pgm_socket_t::get_max_tsdu_size (void)
{
return (size_t)pgm_transport_max_tsdu (g_transport, false);
}
// Returns how many APDUs are needed to fill reading buffer.
size_t zmq::pgm_socket_t::get_max_apdu_at_once (size_t readbuf_size_)
{
zmq_assert (readbuf_size_ > 0);
// Read max TSDU size without fragmentation.
size_t max_tsdu_size = get_max_tsdu_size ();
// Calculate number of APDUs needed to fill the reading buffer.
size_t apdu_count = (int)readbuf_size_ / max_tsdu_size;
if ((int) readbuf_size_ % max_tsdu_size)
apdu_count ++;
// Have to have at least one APDU.
zmq_assert (apdu_count);
return apdu_count;
}
// Allocate buffer for one packet from the transmit window, The memory buffer
// is owned by the transmit window and so must be returned to the window with
// content via pgm_transport_send() calls or unused with pgm_packetv_free1().
void *zmq::pgm_socket_t::get_buffer (size_t *size_)
{
// Store size.
*size_ = get_max_tsdu_size ();
// Allocate one packet.
return pgm_packetv_alloc (g_transport, false);
}
// Return an unused packet allocated from the transmit window
// via pgm_packetv_alloc().
void zmq::pgm_socket_t::free_buffer (void *data_)
{
pgm_packetv_free1 (g_transport, data_, false);
}
// pgm_transport_recvmsgv is called to fill the pgm_msgv array up to
// pgm_msgv_len. In subsequent calls data from pgm_msgv structure are
// returned.
ssize_t zmq::pgm_socket_t::receive (void **raw_data_)
{
// We just sent all data from pgm_transport_recvmsgv up
// and have to return 0 that another engine in this thread is scheduled.
if (nbytes_rec == nbytes_processed && nbytes_rec > 0) {
// Reset all the counters.
nbytes_rec = 0;
nbytes_processed = 0;
pgm_msgv_processed = 0;
return 0;
}
// If we have are going first time or if we have processed all pgm_msgv_t
// structure previously read from the pgm socket.
if (nbytes_rec == nbytes_processed) {
// Check program flow.
zmq_assert (pgm_msgv_processed == 0);
zmq_assert (nbytes_processed == 0);
zmq_assert (nbytes_rec == 0);
// Receive a vector of Application Protocol Domain Unit's (APDUs)
// from the transport.
nbytes_rec = pgm_transport_recvmsgv (g_transport, pgm_msgv,
pgm_msgv_len, MSG_DONTWAIT);
// In a case when no ODATA/RDATA fired POLLIN event (SPM...)
// pgm_transport_recvmsg returns -1 with errno == EAGAIN.
if (nbytes_rec == -1 && errno == EAGAIN) {
// In case if no RDATA/ODATA caused POLLIN 0 is
// returned.
nbytes_rec = 0;
return 0;
}
// For data loss nbytes_rec == -1 errno == ECONNRESET.
if (nbytes_rec == -1 && errno == ECONNRESET) {
// In case of dala loss -1 is returned.
zmq_log (1, "Data loss detected, %s(%i)\n", __FILE__, __LINE__);
nbytes_rec = 0;
return -1;
}
// Catch the rest of the errors.
if (nbytes_rec <= 0) {
zmq_log (1, "received %i B, errno %i, %s(%i)", (int)nbytes_rec,
errno, __FILE__, __LINE__);
errno_assert (nbytes_rec > 0);
}
zmq_log (4, "received %i bytes\n", (int)nbytes_rec);
}
zmq_assert (nbytes_rec > 0);
// Only one APDU per pgm_msgv_t structure is allowed.
zmq_assert (pgm_msgv [pgm_msgv_processed].msgv_iovlen == 1);
// Take pointers from pgm_msgv_t structure.
*raw_data_ = pgm_msgv[pgm_msgv_processed].msgv_iov->iov_base;
size_t raw_data_len = pgm_msgv[pgm_msgv_processed].msgv_iov->iov_len;
// Check if peer TSI did not change, this is detection of peer restart.
const pgm_tsi_t *current_tsi = pgm_msgv [pgm_msgv_processed].msgv_tsi;
// If empty store new TSI.
if (tsi_empty (&tsi)) {
// Store current peer TSI.
memcpy (&tsi, current_tsi, sizeof (pgm_tsi_t));
#ifdef PGM_SOCKET_DEBUG
uint8_t *gsi = (uint8_t*)(&tsi)->gsi.identifier;
#endif
zmq_log (1, "First peer TSI: %i.%i.%i.%i.%i.%i.%i, %s(%i)\n",
gsi [0], gsi [1], gsi [2], gsi [3], gsi [4], gsi [5],
ntohs (tsi.sport), __FILE__, __LINE__);
}
// Compare stored TSI with actual.
if (!tsi_equal (&tsi, current_tsi)) {
// Peer change detected.
zmq_log (1, "Peer change detected, %s(%i)\n", __FILE__, __LINE__);
// Compare with retired TSI, in case of match ignore APDU.
if (tsi_equal (&retired_tsi, current_tsi)) {
zmq_log (1, "Retired TSI - ignoring APDU, %s(%i)\n",
__FILE__, __LINE__);
// Move the the next pgm_msgv_t structure.
pgm_msgv_processed++;
nbytes_processed +=raw_data_len;
return 0;
} else {
zmq_log (1, "New TSI, %s(%i)\n", __FILE__, __LINE__);
// Store new TSI and move last valid to retired_tsi
memcpy (&retired_tsi, &tsi, sizeof (pgm_tsi_t));
memcpy (&tsi, current_tsi, sizeof (pgm_tsi_t));
#ifdef PGM_SOCKET_DEBUG
uint8_t *gsi = (uint8_t*)(&retired_tsi)->gsi.identifier;
#endif
zmq_log (1, "retired TSI: %i.%i.%i.%i.%i.%i.%i, %s(%i)\n",
gsi [0], gsi [1], gsi [2], gsi [3], gsi [4], gsi [5],
ntohs (retired_tsi.sport), __FILE__, __LINE__);
#ifdef PGM_SOCKET_DEBUG
gsi = (uint8_t*)(&tsi)->gsi.identifier;
#endif
zmq_log (1, " TSI: %i.%i.%i.%i.%i.%i.%i, %s(%i)\n",
gsi [0], gsi [1], gsi [2], gsi [3], gsi [4], gsi [5],
ntohs (tsi.sport), __FILE__, __LINE__);
// Peers change is recognized as a GAP.
return -1;
}
}
// Move the the next pgm_msgv_t structure.
pgm_msgv_processed++;
nbytes_processed +=raw_data_len;
zmq_log (4, "sendig up %i bytes\n", (int)raw_data_len);
return raw_data_len;
}
void zmq::pgm_socket_t::process_upstream (void)
{
zmq_log (1, "On upstream packet, %s(%i)\n", __FILE__, __LINE__);
// We acctually do not want to read any data here we are going to
// process NAK.
pgm_msgv_t dummy_msg;
ssize_t dummy_bytes = pgm_transport_recvmsgv (g_transport, &dummy_msg,
1, MSG_DONTWAIT);
// No data should be returned.
zmq_assert (dummy_bytes == -1 && errno == EAGAIN);
}
bool zmq::pgm_socket_t::tsi_equal (const pgm_tsi_t *tsi_a_,
const pgm_tsi_t *tsi_b_)
{
// Compare 6B GSI.
const uint8_t *gsi_a = tsi_a_->gsi.identifier;
const uint8_t *gsi_b = tsi_b_->gsi.identifier;
if (gsi_a [0] != gsi_b [0] || gsi_a [1] != gsi_b [1] ||
gsi_a [2] != gsi_b [2] || gsi_a [3] != gsi_b [3] ||
gsi_a [4] != gsi_b [4] || gsi_a [5] != gsi_b [5]) {
return false;
}
// Compare source port.
if (tsi_a_->sport != tsi_b_->sport) {
return false;
}
return true;
}
bool zmq::pgm_socket_t::tsi_empty (const pgm_tsi_t *tsi_)
{
uint8_t *gsi = (uint8_t*)tsi_->gsi.identifier;
// GSI.
if (gsi [0] != 0 || gsi [1] != 0 || gsi [2] != 0 ||
gsi [3] != 0 || gsi [4] != 0 || gsi [5] != 0) {
return false;
}
// Source port.
if (tsi_->sport != 0) {
return false;
}
return true;
}
#endif
#endif