/*
Copyright (c) 2007-2010 iMatix Corporation
This file is part of 0MQ.
0MQ is free software; you can redistribute it and/or modify it under
the terms of the Lesser GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
0MQ is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Lesser GNU General Public License for more details.
You should have received a copy of the Lesser GNU General Public License
along with this program. If not, see .
*/
#include
#include
#include
#include "../include/zmq.h"
#include "socket_base.hpp"
#include "app_thread.hpp"
#include "dispatcher.hpp"
#include "zmq_listener.hpp"
#include "zmq_connecter.hpp"
#include "io_thread.hpp"
#include "session.hpp"
#include "config.hpp"
#include "owned.hpp"
#include "pipe.hpp"
#include "err.hpp"
#include "platform.hpp"
#include "pgm_sender.hpp"
#include "pgm_receiver.hpp"
zmq::socket_base_t::socket_base_t (app_thread_t *parent_) :
object_t (parent_),
pending_term_acks (0),
ticks (0),
app_thread (parent_),
shutting_down (false),
sent_seqnum (0),
processed_seqnum (0),
next_ordinal (1)
{
}
zmq::socket_base_t::~socket_base_t ()
{
}
int zmq::socket_base_t::setsockopt (int option_, const void *optval_,
size_t optvallen_)
{
// First, check whether specific socket type overloads the option.
int rc = xsetsockopt (option_, optval_, optvallen_);
if (rc == 0 || errno != EINVAL)
return rc;
// If the socket type doesn't support the option, pass it to
// the generic option parser.
return options.setsockopt (option_, optval_, optvallen_);
}
int zmq::socket_base_t::getsockopt (int option_, void *optval_,
size_t *optvallen_)
{
// At the moment there are no socket-type-specific overloads of getsockopt.
return options.getsockopt (option_, optval_, optvallen_);
}
int zmq::socket_base_t::bind (const char *addr_)
{
// Parse addr_ string.
std::string addr_type;
std::string addr_args;
std::string addr (addr_);
std::string::size_type pos = addr.find ("://");
if (pos == std::string::npos) {
errno = EINVAL;
return -1;
}
addr_type = addr.substr (0, pos);
addr_args = addr.substr (pos + 3);
if (addr_type == "inproc")
return register_endpoint (addr_args.c_str (), this);
if (addr_type == "tcp" || addr_type == "ipc") {
#if defined ZMQ_HAVE_WINDOWS || defined ZMQ_HAVE_OPENVMS
if (addr_type == "ipc") {
errno = EPROTONOSUPPORT;
return -1;
}
#endif
zmq_listener_t *listener = new (std::nothrow) zmq_listener_t (
choose_io_thread (options.affinity), this, options);
zmq_assert (listener);
int rc = listener->set_address (addr_type.c_str(), addr_args.c_str ());
if (rc != 0) {
delete listener;
return -1;
}
send_plug (listener);
send_own (this, listener);
return 0;
}
#if defined ZMQ_HAVE_OPENPGM
if (addr_type == "pgm" || addr_type == "epgm") {
// In the case of PGM bind behaves the same like connect.
return connect (addr_);
}
#endif
// Unknown protocol.
errno = EPROTONOSUPPORT;
return -1;
}
int zmq::socket_base_t::connect (const char *addr_)
{
// Parse addr_ string.
std::string addr_type;
std::string addr_args;
std::string addr (addr_);
std::string::size_type pos = addr.find ("://");
if (pos == std::string::npos) {
errno = EINVAL;
return -1;
}
addr_type = addr.substr (0, pos);
addr_args = addr.substr (pos + 3);
if (addr_type == "inproc") {
// TODO: inproc connect is specific with respect to creating pipes
// as there's no 'reconnect' functionality implemented. Once that
// is in place we should follow generic pipe creation algorithm.
// Find the peer socket.
socket_base_t *peer = find_endpoint (addr_args.c_str ());
if (!peer)
return -1;
pipe_t *in_pipe = NULL;
pipe_t *out_pipe = NULL;
// Create inbound pipe, if required.
if (options.requires_in) {
in_pipe = new (std::nothrow) pipe_t (this, peer,
options.hwm, options.lwm);
zmq_assert (in_pipe);
}
// Create outbound pipe, if required.
if (options.requires_out) {
out_pipe = new (std::nothrow) pipe_t (peer, this,
options.hwm, options.lwm);
zmq_assert (out_pipe);
}
// Attach the pipes to this socket object.
attach_pipes (in_pipe ? &in_pipe->reader : NULL,
out_pipe ? &out_pipe->writer : NULL, blob_t ());
// Attach the pipes to the peer socket. Note that peer's seqnum
// was incremented in find_endpoint function. The callee is notified
// about the fact via the last parameter.
send_bind (peer, out_pipe ? &out_pipe->reader : NULL,
in_pipe ? &in_pipe->writer : NULL, options.identity, false);
return 0;
}
// Create unnamed session.
io_thread_t *io_thread = choose_io_thread (options.affinity);
session_t *session = new (std::nothrow) session_t (io_thread,
this, options);
zmq_assert (session);
// If 'immediate connect' feature is required, we'll created the pipes
// to the session straight away. Otherwise, they'll be created by the
// session once the connection is established.
if (options.immediate_connect) {
pipe_t *in_pipe = NULL;
pipe_t *out_pipe = NULL;
// Create inbound pipe, if required.
if (options.requires_in) {
in_pipe = new (std::nothrow) pipe_t (this, session,
options.hwm, options.lwm);
zmq_assert (in_pipe);
}
// Create outbound pipe, if required.
if (options.requires_out) {
out_pipe = new (std::nothrow) pipe_t (session, this,
options.hwm, options.lwm);
zmq_assert (out_pipe);
}
// Attach the pipes to the socket object.
attach_pipes (in_pipe ? &in_pipe->reader : NULL,
out_pipe ? &out_pipe->writer : NULL, blob_t ());
// Attach the pipes to the session object.
session->attach_pipes (out_pipe ? &out_pipe->reader : NULL,
in_pipe ? &in_pipe->writer : NULL, blob_t ());
}
// Activate the session.
send_plug (session);
send_own (this, session);
if (addr_type == "tcp" || addr_type == "ipc") {
#if defined ZMQ_HAVE_WINDOWS || defined ZMQ_HAVE_OPENVMS
// Windows named pipes are not compatible with Winsock API.
// There's no UNIX domain socket implementation on OpenVMS.
if (addr_type == "ipc") {
errno = EPROTONOSUPPORT;
return -1;
}
#endif
// Create the connecter object. Supply it with the session name
// so that it can bind the new connection to the session once
// it is established.
zmq_connecter_t *connecter = new (std::nothrow) zmq_connecter_t (
choose_io_thread (options.affinity), this, options,
session->get_ordinal (), false);
zmq_assert (connecter);
int rc = connecter->set_address (addr_type.c_str(), addr_args.c_str ());
if (rc != 0) {
delete connecter;
return -1;
}
send_plug (connecter);
send_own (this, connecter);
return 0;
}
#if defined ZMQ_HAVE_OPENPGM
if (addr_type == "pgm" || addr_type == "epgm") {
// If the socket type requires bi-directional communication
// multicast is not an option (it is uni-directional).
if (options.requires_in && options.requires_out) {
errno = ENOCOMPATPROTO;
return -1;
}
// For epgm, pgm transport with UDP encapsulation is used.
bool udp_encapsulation = (addr_type == "epgm");
// At this point we'll create message pipes to the session straight
// away. There's no point in delaying it as no concept of 'connect'
// exists with PGM anyway.
if (options.requires_out) {
// PGM sender.
pgm_sender_t *pgm_sender = new (std::nothrow) pgm_sender_t (
choose_io_thread (options.affinity), options);
zmq_assert (pgm_sender);
int rc = pgm_sender->init (udp_encapsulation, addr_args.c_str ());
if (rc != 0) {
delete pgm_sender;
return -1;
}
send_attach (session, pgm_sender, blob_t ());
}
else if (options.requires_in) {
// PGM receiver.
pgm_receiver_t *pgm_receiver = new (std::nothrow) pgm_receiver_t (
choose_io_thread (options.affinity), options);
zmq_assert (pgm_receiver);
int rc = pgm_receiver->init (udp_encapsulation, addr_args.c_str ());
if (rc != 0) {
delete pgm_receiver;
return -1;
}
send_attach (session, pgm_receiver, blob_t ());
}
else
zmq_assert (false);
return 0;
}
#endif
// Unknown protoco.
errno = EPROTONOSUPPORT;
return -1;
}
int zmq::socket_base_t::send (::zmq_msg_t *msg_, int flags_)
{
// ZMQ_MORE is actually a message flag, not a real send-flag
// such as ZMQ_NOBLOCK. At this point we impose it on the message.
if (flags_ & ZMQ_MORE)
msg_->flags |= ZMQ_MSG_MORE;
// Process pending commands, if any.
app_thread->process_commands (false, true);
// Try to send the message.
int rc = xsend (msg_, flags_);
if (rc == 0)
return 0;
// In case of non-blocking send we'll simply propagate
// the error - including EAGAIN - upwards.
if (flags_ & ZMQ_NOBLOCK)
return -1;
// Oops, we couldn't send the message. Wait for the next
// command, process it and try to send the message again.
while (rc != 0) {
if (errno != EAGAIN)
return -1;
app_thread->process_commands (true, false);
rc = xsend (msg_, flags_);
}
return 0;
}
int zmq::socket_base_t::recv (::zmq_msg_t *msg_, int flags_)
{
// Get the message.
int rc = xrecv (msg_, flags_);
int err = errno;
// Once every inbound_poll_rate messages check for signals and process
// incoming commands. This happens only if we are not polling altogether
// because there are messages available all the time. If poll occurs,
// ticks is set to zero and thus we avoid this code.
//
// Note that 'recv' uses different command throttling algorithm (the one
// described above) from the one used by 'send'. This is because counting
// ticks is more efficient than doing rdtsc all the time.
if (++ticks == inbound_poll_rate) {
app_thread->process_commands (false, false);
ticks = 0;
}
// If we have the message, return immediately.
if (rc == 0)
return 0;
// If we don't have the message, restore the original cause of the problem.
errno = err;
// If the message cannot be fetched immediately, there are two scenarios.
// For non-blocking recv, commands are processed in case there's a revive
// command already waiting int a command pipe. If it's not, return EAGAIN.
if (flags_ & ZMQ_NOBLOCK) {
if (errno != EAGAIN)
return -1;
app_thread->process_commands (false, false);
ticks = 0;
return xrecv (msg_, flags_);
}
// In blocking scenario, commands are processed over and over again until
// we are able to fetch a message.
while (rc != 0) {
if (errno != EAGAIN)
return -1;
app_thread->process_commands (true, false);
rc = xrecv (msg_, flags_);
ticks = 0;
}
return 0;
}
int zmq::socket_base_t::close ()
{
shutting_down = true;
// Let the thread know that the socket is no longer available.
app_thread->remove_socket (this);
// Pointer to the dispatcher must be retrieved before the socket is
// deallocated. Afterwards it is not available.
dispatcher_t *dispatcher = get_dispatcher ();
// Unregister all inproc endpoints associated with this socket.
// From this point we are sure that inc_seqnum won't be called again
// on this object.
dispatcher->unregister_endpoints (this);
// Wait till all undelivered commands are delivered. This should happen
// very quickly. There's no way to wait here for extensive period of time.
while (processed_seqnum != sent_seqnum.get ())
app_thread->process_commands (true, false);
while (true) {
// On third pass of the loop there should be no more I/O objects
// because all connecters and listerners were destroyed during
// the first pass and all engines delivered by delayed 'own' commands
// are destroyed during the second pass.
if (io_objects.empty () && !pending_term_acks)
break;
// Send termination request to all associated I/O objects.
for (io_objects_t::iterator it = io_objects.begin ();
it != io_objects.end (); it++)
send_term (*it);
// Move the objects to the list of pending term acks.
pending_term_acks += io_objects.size ();
io_objects.clear ();
// Process commands till we get all the termination acknowledgements.
while (pending_term_acks)
app_thread->process_commands (true, false);
}
// Check whether there are no session leaks.
sessions_sync.lock ();
zmq_assert (named_sessions.empty ());
zmq_assert (unnamed_sessions.empty ());
sessions_sync.unlock ();
delete this;
// This function must be called after the socket is completely deallocated
// as it may cause termination of the whole 0MQ infrastructure.
dispatcher->destroy_socket ();
return 0;
}
void zmq::socket_base_t::inc_seqnum ()
{
// NB: This function may be called from a different thread!
sent_seqnum.add (1);
}
zmq::app_thread_t *zmq::socket_base_t::get_thread ()
{
return app_thread;
}
bool zmq::socket_base_t::has_in ()
{
return xhas_in ();
}
bool zmq::socket_base_t::has_out ()
{
return xhas_out ();
}
bool zmq::socket_base_t::register_session (const blob_t &peer_identity_,
session_t *session_)
{
sessions_sync.lock ();
bool registered = named_sessions.insert (
std::make_pair (peer_identity_, session_)).second;
sessions_sync.unlock ();
return registered;
}
void zmq::socket_base_t::unregister_session (const blob_t &peer_identity_)
{
sessions_sync.lock ();
named_sessions_t::iterator it = named_sessions.find (peer_identity_);
zmq_assert (it != named_sessions.end ());
named_sessions.erase (it);
sessions_sync.unlock ();
}
zmq::session_t *zmq::socket_base_t::find_session (const blob_t &peer_identity_)
{
sessions_sync.lock ();
named_sessions_t::iterator it = named_sessions.find (peer_identity_);
if (it == named_sessions.end ()) {
sessions_sync.unlock ();
return NULL;
}
session_t *session = it->second;
// Prepare the session for subsequent attach command.
session->inc_seqnum ();
sessions_sync.unlock ();
return session;
}
uint64_t zmq::socket_base_t::register_session (session_t *session_)
{
sessions_sync.lock ();
uint64_t ordinal = next_ordinal;
next_ordinal++;
unnamed_sessions.insert (std::make_pair (ordinal, session_));
sessions_sync.unlock ();
return ordinal;
}
void zmq::socket_base_t::unregister_session (uint64_t ordinal_)
{
sessions_sync.lock ();
unnamed_sessions_t::iterator it = unnamed_sessions.find (ordinal_);
zmq_assert (it != unnamed_sessions.end ());
unnamed_sessions.erase (it);
sessions_sync.unlock ();
}
zmq::session_t *zmq::socket_base_t::find_session (uint64_t ordinal_)
{
sessions_sync.lock ();
unnamed_sessions_t::iterator it = unnamed_sessions.find (ordinal_);
if (it == unnamed_sessions.end ()) {
sessions_sync.unlock ();
return NULL;
}
session_t *session = it->second;
// Prepare the session for subsequent attach command.
session->inc_seqnum ();
sessions_sync.unlock ();
return session;
}
void zmq::socket_base_t::kill (reader_t *pipe_)
{
xkill (pipe_);
}
void zmq::socket_base_t::revive (reader_t *pipe_)
{
xrevive (pipe_);
}
void zmq::socket_base_t::revive (writer_t *pipe_)
{
xrevive (pipe_);
}
void zmq::socket_base_t::attach_pipes (class reader_t *inpipe_,
class writer_t *outpipe_, const blob_t &peer_identity_)
{
if (inpipe_)
inpipe_->set_endpoint (this);
if (outpipe_)
outpipe_->set_endpoint (this);
xattach_pipes (inpipe_, outpipe_, peer_identity_);
}
void zmq::socket_base_t::detach_inpipe (class reader_t *pipe_)
{
xdetach_inpipe (pipe_);
pipe_->set_endpoint (NULL); // ?
}
void zmq::socket_base_t::detach_outpipe (class writer_t *pipe_)
{
xdetach_outpipe (pipe_);
pipe_->set_endpoint (NULL); // ?
}
void zmq::socket_base_t::process_own (owned_t *object_)
{
io_objects.insert (object_);
}
void zmq::socket_base_t::process_bind (reader_t *in_pipe_, writer_t *out_pipe_,
const blob_t &peer_identity_)
{
attach_pipes (in_pipe_, out_pipe_, peer_identity_);
}
void zmq::socket_base_t::process_term_req (owned_t *object_)
{
// When shutting down we can ignore termination requests from owned
// objects. They are going to be terminated anyway.
if (shutting_down)
return;
// If I/O object is well and alive ask it to terminate.
io_objects_t::iterator it = std::find (io_objects.begin (),
io_objects.end (), object_);
// If not found, we assume that termination request was already sent to
// the object so we can sagely ignore the request.
if (it == io_objects.end ())
return;
pending_term_acks++;
io_objects.erase (it);
send_term (object_);
}
void zmq::socket_base_t::process_term_ack ()
{
zmq_assert (pending_term_acks);
pending_term_acks--;
}
void zmq::socket_base_t::process_seqnum ()
{
processed_seqnum++;
}