/*
Copyright (c) 2007-2009 FastMQ Inc.
This file is part of 0MQ.
0MQ is free software; you can redistribute it and/or modify it under
the terms of the Lesser GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
0MQ is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Lesser GNU General Public License for more details.
You should have received a copy of the Lesser GNU General Public License
along with this program. If not, see .
*/
#include
#include
#include "../c/zmq.h"
#include "socket_base.hpp"
#include "app_thread.hpp"
#include "dispatcher.hpp"
#include "zmq_listener.hpp"
#include "zmq_connecter.hpp"
#include "msg_content.hpp"
#include "io_thread.hpp"
#include "session.hpp"
#include "config.hpp"
#include "owned.hpp"
#include "uuid.hpp"
#include "pipe.hpp"
#include "err.hpp"
#include "platform.hpp"
#include "pgm_sender.hpp"
#include "pgm_receiver.hpp"
zmq::socket_base_t::socket_base_t (app_thread_t *parent_, int type_) :
object_t (parent_),
type (type_),
current (0),
active (0),
pending_term_acks (0),
ticks (0),
app_thread (parent_),
shutting_down (false),
index (-1)
{
}
zmq::socket_base_t::~socket_base_t ()
{
shutting_down = true;
// Ask all pipes to terminate.
for (in_pipes_t::iterator it = in_pipes.begin ();
it != in_pipes.end (); it++)
(*it)->term ();
in_pipes.clear ();
for (out_pipes_t::iterator it = out_pipes.begin ();
it != out_pipes.end (); it++)
(*it)->term ();
out_pipes.clear ();
while (true) {
// On third pass of the loop there should be no more I/O objects
// because all connecters and listerners were destroyed during
// the first pass and all engines delivered by delayed 'own' commands
// are destroyed during the second pass.
if (io_objects.empty () && !pending_term_acks)
break;
// Send termination request to all associated I/O objects.
for (io_objects_t::iterator it = io_objects.begin ();
it != io_objects.end (); it++)
send_term (*it);
// Move the objects to the list of pending term acks.
pending_term_acks += io_objects.size ();
io_objects.clear ();
// Process commands till we get all the termination acknowledgements.
while (pending_term_acks)
app_thread->process_commands (true, false);
}
// Check whether there are no session leaks.
sessions_sync.lock ();
zmq_assert (sessions.empty ());
sessions_sync.unlock ();
}
int zmq::socket_base_t::setsockopt (int option_, const void *optval_,
size_t optvallen_)
{
switch (option_) {
case ZMQ_HWM:
if (optvallen_ != sizeof (int64_t)) {
errno = EINVAL;
return -1;
}
options.hwm = *((int64_t*) optval_);
return 0;
case ZMQ_LWM:
if (optvallen_ != sizeof (int64_t)) {
errno = EINVAL;
return -1;
}
options.lwm = *((int64_t*) optval_);
return 0;
case ZMQ_SWAP:
if (optvallen_ != sizeof (int64_t)) {
errno = EINVAL;
return -1;
}
options.swap = *((int64_t*) optval_);
return 0;
case ZMQ_AFFINITY:
if (optvallen_ != sizeof (int64_t)) {
errno = EINVAL;
return -1;
}
options.affinity = (uint64_t) *((int64_t*) optval_);
return 0;
case ZMQ_IDENTITY:
options.identity.assign ((const char*) optval_, optvallen_);
return 0;
case ZMQ_SUBSCRIBE:
case ZMQ_UNSUBSCRIBE:
errno = EFAULT;
return -1;
case ZMQ_RATE:
if (optvallen_ != sizeof (int64_t)) {
errno = EINVAL;
return -1;
}
options.rate = (uint32_t) *((int64_t*) optval_);
return 0;
case ZMQ_RECOVERY_IVL:
if (optvallen_ != sizeof (int64_t)) {
errno = EINVAL;
return -1;
}
options.recovery_ivl = (uint32_t) *((int64_t*) optval_);
return 0;
case ZMQ_MCAST_LOOP:
if (optvallen_ != sizeof (int64_t)) {
errno = EINVAL;
return -1;
}
if ((int64_t) *((int64_t*) optval_) == 0 ||
(int64_t) *((int64_t*) optval_) == 1) {
options.use_multicast_loop = (bool) *((int64_t*) optval_);
} else {
errno = EINVAL;
return -1;
}
return 0;
default:
errno = EINVAL;
return -1;
}
}
int zmq::socket_base_t::bind (const char *addr_)
{
// Parse addr_ string.
std::string addr_type;
std::string addr_args;
std::string addr (addr_);
std::string::size_type pos = addr.find ("://");
if (pos == std::string::npos) {
errno = EINVAL;
return -1;
}
addr_type = addr.substr (0, pos);
addr_args = addr.substr (pos + 3);
if (addr_type == "tcp") {
zmq_listener_t *listener = new zmq_listener_t (
choose_io_thread (options.affinity), this, options);
int rc = listener->set_address (addr_args.c_str ());
if (rc != 0)
return -1;
send_plug (listener);
send_own (this, listener);
return 0;
}
#if defined ZMQ_HAVE_OPENPGM
if (addr_type == "pgm") {
// In the case of PGM bind behaves the same like connect.
return connect (addr_);
}
#endif
// Unknown address type.
errno = EFAULT;
return -1;
}
int zmq::socket_base_t::connect (const char *addr_)
{
// Generate a unique name for the session.
std::string session_name ("#");
session_name += uuid_t ().to_string ();
// Parse addr_ string.
std::string addr_type;
std::string addr_args;
std::string addr (addr_);
std::string::size_type pos = addr.find ("://");
if (pos == std::string::npos) {
errno = EINVAL;
return -1;
}
addr_type = addr.substr (0, pos);
addr_args = addr.substr (pos + 3);
// Create the session.
io_thread_t *io_thread = choose_io_thread (options.affinity);
session_t *session = new session_t (io_thread, this, session_name.c_str (),
options, true);
zmq_assert (session);
// Create inbound pipe.
pipe_t *in_pipe = new pipe_t (this, session, options.hwm, options.lwm);
zmq_assert (in_pipe);
in_pipe->reader.set_endpoint (this);
session->attach_outpipe (&in_pipe->writer);
in_pipes.push_back (&in_pipe->reader);
in_pipes.back ()->set_index (active);
in_pipes [active]->set_index (in_pipes.size () - 1);
std::swap (in_pipes.back (), in_pipes [active]);
active++;
// Create outbound pipe.
pipe_t *out_pipe = new pipe_t (session, this, options.hwm, options.lwm);
zmq_assert (out_pipe);
out_pipe->writer.set_endpoint (this);
session->attach_inpipe (&out_pipe->reader);
out_pipes.push_back (&out_pipe->writer);
// Activate the session.
send_plug (session);
send_own (this, session);
if (addr_type == "tcp") {
// Create the connecter object. Supply it with the session name so that
// it can bind the new connection to the session once it is established.
zmq_connecter_t *connecter = new zmq_connecter_t (
choose_io_thread (options.affinity), this, options,
session_name.c_str (), false);
int rc = connecter->set_address (addr_args.c_str ());
if (rc != 0) {
delete connecter;
return -1;
}
send_plug (connecter);
send_own (this, connecter);
return 0;
}
#if defined ZMQ_HAVE_OPENPGM
if (addr_type == "pgm") {
switch (type) {
// PGM sender.
case ZMQ_PUB:
{
pgm_sender_t *pgm_sender =
new pgm_sender_t (choose_io_thread (options.affinity), options,
session_name.c_str ());
int rc = pgm_sender->init (addr_args.c_str ());
if (rc != 0) {
delete pgm_sender;
return -1;
}
// Reserve a sequence number for following 'attach' command.
session->inc_seqnum ();
send_attach (session, pgm_sender);
pgm_sender = NULL;
break;
}
// PGM receiver.
case ZMQ_SUB:
{
pgm_receiver_t *pgm_receiver =
new pgm_receiver_t (choose_io_thread (options.affinity), options,
session_name.c_str ());
int rc = pgm_receiver->init (addr_args.c_str ());
if (rc != 0) {
delete pgm_receiver;
return -1;
}
// Reserve a sequence number for following 'attach' command.
session->inc_seqnum ();
send_attach (session, pgm_receiver);
pgm_receiver = NULL;
break;
}
default:
errno = EINVAL;
return -1;
}
return 0;
}
#endif
// Unknown address type.
errno = EFAULT;
return -1;
}
int zmq::socket_base_t::send (::zmq_msg_t *msg_, int flags_)
{
// Process pending commands, if any.
app_thread->process_commands (false, true);
// Try to send the message.
bool sent = distribute (msg_, !(flags_ & ZMQ_NOFLUSH));
if (!(flags_ & ZMQ_NOBLOCK)) {
// Oops, we couldn't send the message. Wait for the next
// command, process it and try to send the message again.
while (!sent) {
app_thread->process_commands (true, false);
sent = distribute (msg_, !(flags_ & ZMQ_NOFLUSH));
}
}
else if (!sent) {
errno = EAGAIN;
return -1;
}
return 0;
}
int zmq::socket_base_t::flush ()
{
for (out_pipes_t::iterator it = out_pipes.begin (); it != out_pipes.end ();
it++)
(*it)->flush ();
return 0;
}
int zmq::socket_base_t::recv (::zmq_msg_t *msg_, int flags_)
{
// If the message cannot be fetched immediately, there are two scenarios.
// For non-blocking recv, commands are processed in case there's a message
// already waiting we don't know about. If it's not, return EAGAIN.
// In blocking scenario, commands are processed over and over again until
// we are able to fetch a message.
bool fetched = fetch (msg_);
if (!fetched) {
if (flags_ & ZMQ_NOBLOCK) {
app_thread->process_commands (false, false);
fetched = fetch (msg_);
}
else {
while (!fetched) {
app_thread->process_commands (true, false);
ticks = 0;
fetched = fetch (msg_);
}
}
}
// Once every inbound_poll_rate messages check for signals and process
// incoming commands. This happens only if we are not polling altogether
// because there are messages available all the time. If poll occurs,
// ticks is set to zero and thus we avoid this code.
//
// Note that 'recv' uses different command throttling algorithm (the one
// described above) from the one used by 'send'. This is because counting
// ticks is more efficient than doing rdtsc all the time.
if (++ticks == inbound_poll_rate) {
app_thread->process_commands (false, false);
ticks = 0;
}
if (!fetched) {
errno = EAGAIN;
return -1;
}
return 0;
}
int zmq::socket_base_t::close ()
{
app_thread->remove_socket (this);
// Pointer to the dispatcher must be retrieved before the socket is
// deallocated. Afterwards it is not available.
dispatcher_t *dispatcher = get_dispatcher ();
delete this;
// This function must be called after the socket is completely deallocated
// as it may cause termination of the whole 0MQ infrastructure.
dispatcher->destroy_socket ();
return 0;
}
bool zmq::socket_base_t::register_session (const char *name_,
session_t *session_)
{
sessions_sync.lock ();
bool registered = sessions.insert (std::make_pair (name_, session_)).second;
sessions_sync.unlock ();
return registered;
}
bool zmq::socket_base_t::unregister_session (const char *name_)
{
sessions_sync.lock ();
sessions_t::iterator it = sessions.find (name_);
bool unregistered = (it != sessions.end ());
sessions.erase (it);
sessions_sync.unlock ();
return unregistered;
}
zmq::session_t *zmq::socket_base_t::find_session (const char *name_)
{
sessions_sync.lock ();
sessions_t::iterator it = sessions.find (name_);
if (it == sessions.end ()) {
sessions_sync.unlock ();
return NULL;
}
// Prepare the session for subsequent attach command.
it->second->inc_seqnum ();
sessions_sync.unlock ();
return it->second;
}
void zmq::socket_base_t::attach_inpipe (class reader_t *pipe_)
{
pipe_->set_endpoint (this);
in_pipes.push_back (pipe_);
in_pipes.back ()->set_index (active);
in_pipes [active]->set_index (in_pipes.size () - 1);
std::swap (in_pipes.back (), in_pipes [active]);
active++;
}
void zmq::socket_base_t::attach_outpipe (class writer_t *pipe_)
{
pipe_->set_endpoint (this);
out_pipes.push_back (pipe_);
pipe_->set_index (out_pipes.size () - 1);
}
void zmq::socket_base_t::revive (reader_t *pipe_)
{
// Move the pipe to the list of active pipes.
in_pipes_t::size_type index = (in_pipes_t::size_type) pipe_->get_index ();
in_pipes [index]->set_index (active);
in_pipes [active]->set_index (index);
std::swap (in_pipes [index], in_pipes [active]);
active++;
}
void zmq::socket_base_t::detach_inpipe (class reader_t *pipe_)
{
// Remove the pipe from the list of inbound pipes.
in_pipes_t::size_type index = (in_pipes_t::size_type) pipe_->get_index ();
if (index < active) {
in_pipes [index]->set_index (active - 1);
in_pipes [active - 1]->set_index (index);
std::swap (in_pipes [index], in_pipes [active - 1]);
active--;
index = active;
}
in_pipes [index]->set_index (in_pipes.size () - 1);
in_pipes [in_pipes.size () - 1]->set_index (index);
std::swap (in_pipes [index], in_pipes [in_pipes.size () - 1]);
in_pipes.pop_back ();
}
void zmq::socket_base_t::detach_outpipe (class writer_t *pipe_)
{
out_pipes_t::size_type index = (out_pipes_t::size_type) pipe_->get_index ();
out_pipes [index]->set_index (out_pipes.size () - 1);
out_pipes [out_pipes.size () - 1]->set_index (index);
std::swap (out_pipes [index], out_pipes [out_pipes.size () - 1]);
out_pipes.pop_back ();
}
void zmq::socket_base_t::set_index (int index_)
{
index = index_;
}
int zmq::socket_base_t::get_index ()
{
zmq_assert (index != -1);
return index;
}
void zmq::socket_base_t::process_own (owned_t *object_)
{
io_objects.insert (object_);
}
void zmq::socket_base_t::process_bind (owned_t *session_,
reader_t *in_pipe_, writer_t *out_pipe_)
{
zmq_assert (in_pipe_);
attach_inpipe (in_pipe_);
zmq_assert (out_pipe_);
attach_outpipe (out_pipe_);
}
void zmq::socket_base_t::process_term_req (owned_t *object_)
{
// When shutting down we can ignore termination requests from owned
// objects. They are going to be terminated anyway.
if (shutting_down)
return;
// If I/O object is well and alive ask it to terminate.
io_objects_t::iterator it = std::find (io_objects.begin (),
io_objects.end (), object_);
// If not found, we assume that termination request was already sent to
// the object so we can sagely ignore the request.
if (it == io_objects.end ())
return;
pending_term_acks++;
io_objects.erase (it);
send_term (object_);
}
void zmq::socket_base_t::process_term_ack ()
{
zmq_assert (pending_term_acks);
pending_term_acks--;
}
bool zmq::socket_base_t::distribute (zmq_msg_t *msg_, bool flush_)
{
int pipes_count = out_pipes.size ();
// If there are no pipes available, simply drop the message.
if (pipes_count == 0) {
int rc = zmq_msg_close (msg_);
zmq_assert (rc == 0);
rc = zmq_msg_init (msg_);
zmq_assert (rc == 0);
return true;
}
// First check whether all pipes are available for writing.
for (out_pipes_t::iterator it = out_pipes.begin (); it != out_pipes.end ();
it++)
if (!(*it)->check_write (zmq_msg_size (msg_)))
return false;
msg_content_t *content = (msg_content_t*) msg_->content;
// For VSMs the copying is straighforward.
if (content == (msg_content_t*) ZMQ_VSM) {
for (out_pipes_t::iterator it = out_pipes.begin ();
it != out_pipes.end (); it++) {
(*it)->write (msg_);
if (flush_)
(*it)->flush ();
}
int rc = zmq_msg_init (msg_);
zmq_assert (rc == 0);
return true;
}
// Optimisation for the case when there's only a single pipe
// to send the message to - no refcount adjustment i.e. no atomic
// operations are needed.
if (pipes_count == 1) {
(*out_pipes.begin ())->write (msg_);
if (flush_)
(*out_pipes.begin ())->flush ();
int rc = zmq_msg_init (msg_);
zmq_assert (rc == 0);
return true;
}
// There are at least 2 destinations for the message. That means we have
// to deal with reference counting. First add N-1 references to
// the content (we are holding one reference anyway, that's why -1).
if (msg_->shared)
content->refcnt.add (pipes_count - 1);
else {
content->refcnt.set (pipes_count);
msg_->shared = true;
}
// Push the message to all destinations.
for (out_pipes_t::iterator it = out_pipes.begin (); it != out_pipes.end ();
it++) {
(*it)->write (msg_);
if (flush_)
(*it)->flush ();
}
// Detach the original message from the data buffer.
int rc = zmq_msg_init (msg_);
zmq_assert (rc == 0);
return true;
}
bool zmq::socket_base_t::fetch (zmq_msg_t *msg_)
{
// Deallocate old content of the message.
zmq_msg_close (msg_);
// Round-robin over the pipes to get next message.
for (int count = active; count != 0; count--) {
bool fetched = in_pipes [current]->read (msg_);
// If there's no message in the pipe, move it to the list of
// non-active pipes.
if (!fetched) {
in_pipes [current]->set_index (active - 1);
in_pipes [active - 1]->set_index (current);
std::swap (in_pipes [current], in_pipes [active - 1]);
active--;
}
current ++;
if (current >= active)
current = 0;
if (fetched)
return true;
}
// No message is available. Initialise the output parameter
// to be a 0-byte message.
zmq_msg_init (msg_);
return false;
}