/*
Copyright (c) 2009-2011 250bpm s.r.o.
Copyright (c) 2007-2011 iMatix Corporation
Copyright (c) 2011 VMware, Inc.
Copyright (c) 2007-2011 Other contributors as noted in the AUTHORS file
This file is part of 0MQ.
0MQ is free software; you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
0MQ is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program. If not, see .
*/
#include
#include
#include
#include "platform.hpp"
#if defined ZMQ_HAVE_WINDOWS
#include "windows.hpp"
#if defined _MSC_VER
#include
#endif
#else
#include
#endif
#include "socket_base.hpp"
#include "tcp_listener.hpp"
#include "ipc_listener.hpp"
#include "tcp_connecter.hpp"
#include "io_thread.hpp"
#include "session_base.hpp"
#include "config.hpp"
#include "clock.hpp"
#include "pipe.hpp"
#include "err.hpp"
#include "ctx.hpp"
#include "platform.hpp"
#include "likely.hpp"
#include "msg.hpp"
#include "pair.hpp"
#include "pub.hpp"
#include "sub.hpp"
#include "req.hpp"
#include "rep.hpp"
#include "pull.hpp"
#include "push.hpp"
#include "xreq.hpp"
#include "xrep.hpp"
#include "xpub.hpp"
#include "xsub.hpp"
bool zmq::socket_base_t::check_tag ()
{
return tag == 0xbaddecaf;
}
zmq::socket_base_t *zmq::socket_base_t::create (int type_, class ctx_t *parent_,
uint32_t tid_)
{
socket_base_t *s = NULL;
switch (type_) {
case ZMQ_PAIR:
s = new (std::nothrow) pair_t (parent_, tid_);
break;
case ZMQ_PUB:
s = new (std::nothrow) pub_t (parent_, tid_);
break;
case ZMQ_SUB:
s = new (std::nothrow) sub_t (parent_, tid_);
break;
case ZMQ_REQ:
s = new (std::nothrow) req_t (parent_, tid_);
break;
case ZMQ_REP:
s = new (std::nothrow) rep_t (parent_, tid_);
break;
case ZMQ_XREQ:
s = new (std::nothrow) xreq_t (parent_, tid_);
break;
case ZMQ_XREP:
s = new (std::nothrow) xrep_t (parent_, tid_);
break;
case ZMQ_PULL:
s = new (std::nothrow) pull_t (parent_, tid_);
break;
case ZMQ_PUSH:
s = new (std::nothrow) push_t (parent_, tid_);
break;
case ZMQ_XPUB:
s = new (std::nothrow) xpub_t (parent_, tid_);
break;
case ZMQ_XSUB:
s = new (std::nothrow) xsub_t (parent_, tid_);
break;
default:
errno = EINVAL;
return NULL;
}
alloc_assert (s);
return s;
}
zmq::socket_base_t::socket_base_t (ctx_t *parent_, uint32_t tid_) :
own_t (parent_, tid_),
tag (0xbaddecaf),
ctx_terminated (false),
destroyed (false),
last_tsc (0),
ticks (0),
rcvmore (false)
{
}
zmq::socket_base_t::~socket_base_t ()
{
zmq_assert (destroyed);
// Mark the socket as dead.
tag = 0xdeadbeef;
}
zmq::mailbox_t *zmq::socket_base_t::get_mailbox ()
{
return &mailbox;
}
void zmq::socket_base_t::stop ()
{
// Called by ctx when it is terminated (zmq_term).
// 'stop' command is sent from the threads that called zmq_term to
// the thread owning the socket. This way, blocking call in the
// owner thread can be interrupted.
send_stop ();
}
int zmq::socket_base_t::parse_uri (const char *uri_,
std::string &protocol_, std::string &address_)
{
zmq_assert (uri_ != NULL);
std::string uri (uri_);
std::string::size_type pos = uri.find ("://");
if (pos == std::string::npos) {
errno = EINVAL;
return -1;
}
protocol_ = uri.substr (0, pos);
address_ = uri.substr (pos + 3);
if (protocol_.empty () || address_.empty ()) {
errno = EINVAL;
return -1;
}
return 0;
}
int zmq::socket_base_t::check_protocol (const std::string &protocol_)
{
// First check out whether the protcol is something we are aware of.
if (protocol_ != "inproc" && protocol_ != "ipc" && protocol_ != "tcp" &&
protocol_ != "pgm" && protocol_ != "epgm" && protocol_ != "sys") {
errno = EPROTONOSUPPORT;
return -1;
}
// If 0MQ is not compiled with OpenPGM, pgm and epgm transports
// are not avaialble.
#if !defined ZMQ_HAVE_OPENPGM
if (protocol_ == "pgm" || protocol_ == "epgm") {
errno = EPROTONOSUPPORT;
return -1;
}
#endif
// IPC transport is not available on Windows and OpenVMS.
#if defined ZMQ_HAVE_WINDOWS || defined ZMQ_HAVE_OPENVMS
if (protocol_ == "ipc") {
// Unknown protocol.
errno = EPROTONOSUPPORT;
return -1;
}
#endif
// Check whether socket type and transport protocol match.
// Specifically, multicast protocols can't be combined with
// bi-directional messaging patterns (socket types).
if ((protocol_ == "pgm" || protocol_ == "epgm") &&
options.type != ZMQ_PUB && options.type != ZMQ_SUB &&
options.type != ZMQ_XPUB && options.type != ZMQ_XSUB) {
errno = ENOCOMPATPROTO;
return -1;
}
// Protocol is available.
return 0;
}
void zmq::socket_base_t::attach_pipe (pipe_t *pipe_)
{
// First, register the pipe so that we can terminate it later on.
pipe_->set_event_sink (this);
pipes.push_back (pipe_);
// Let the derived socket type know about new pipe.
xattach_pipe (pipe_);
// If the socket is already being closed, ask any new pipes to terminate
// straight away.
if (is_terminating ()) {
register_term_acks (1);
pipe_->terminate (false);
}
}
int zmq::socket_base_t::setsockopt (int option_, const void *optval_,
size_t optvallen_)
{
if (unlikely (ctx_terminated)) {
errno = ETERM;
return -1;
}
// First, check whether specific socket type overloads the option.
int rc = xsetsockopt (option_, optval_, optvallen_);
if (rc == 0 || errno != EINVAL)
return rc;
// If the socket type doesn't support the option, pass it to
// the generic option parser.
return options.setsockopt (option_, optval_, optvallen_);
}
int zmq::socket_base_t::getsockopt (int option_, void *optval_,
size_t *optvallen_)
{
if (unlikely (ctx_terminated)) {
errno = ETERM;
return -1;
}
if (option_ == ZMQ_RCVMORE) {
if (*optvallen_ < sizeof (int)) {
errno = EINVAL;
return -1;
}
*((int*) optval_) = rcvmore ? 1 : 0;
*optvallen_ = sizeof (int);
return 0;
}
if (option_ == ZMQ_FD) {
if (*optvallen_ < sizeof (fd_t)) {
errno = EINVAL;
return -1;
}
*((fd_t*) optval_) = mailbox.get_fd ();
*optvallen_ = sizeof (fd_t);
return 0;
}
if (option_ == ZMQ_EVENTS) {
if (*optvallen_ < sizeof (int)) {
errno = EINVAL;
return -1;
}
int rc = process_commands (0, false);
if (rc != 0 && (errno == EINTR || errno == ETERM))
return -1;
errno_assert (rc == 0);
*((int*) optval_) = 0;
if (has_out ())
*((int*) optval_) |= ZMQ_POLLOUT;
if (has_in ())
*((int*) optval_) |= ZMQ_POLLIN;
*optvallen_ = sizeof (int);
return 0;
}
return options.getsockopt (option_, optval_, optvallen_);
}
int zmq::socket_base_t::bind (const char *addr_)
{
if (unlikely (ctx_terminated)) {
errno = ETERM;
return -1;
}
// Parse addr_ string.
std::string protocol;
std::string address;
int rc = parse_uri (addr_, protocol, address);
if (rc != 0)
return -1;
rc = check_protocol (protocol);
if (rc != 0)
return -1;
if (protocol == "inproc" || protocol == "sys") {
endpoint_t endpoint = {this, options};
return register_endpoint (addr_, endpoint);
}
if (protocol == "pgm" || protocol == "epgm") {
// For convenience's sake, bind can be used interchageable with
// connect for PGM and EPGM transports.
return connect (addr_);
}
// Remaining trasnports require to be run in an I/O thread, so at this
// point we'll choose one.
io_thread_t *io_thread = choose_io_thread (options.affinity);
if (!io_thread) {
errno = EMTHREAD;
return -1;
}
if (protocol == "tcp") {
tcp_listener_t *listener = new (std::nothrow) tcp_listener_t (
io_thread, this, options);
alloc_assert (listener);
int rc = listener->set_address (address.c_str ());
if (rc != 0) {
delete listener;
return -1;
}
launch_child (listener);
return 0;
}
#if !defined ZMQ_HAVE_WINDOWS && !defined ZMQ_HAVE_OPENVMS
if (protocol == "ipc") {
ipc_listener_t *listener = new (std::nothrow) ipc_listener_t (
io_thread, this, options);
alloc_assert (listener);
int rc = listener->set_address (address.c_str ());
if (rc != 0) {
delete listener;
return -1;
}
launch_child (listener);
return 0;
}
#endif
zmq_assert (false);
return -1;
}
int zmq::socket_base_t::connect (const char *addr_)
{
if (unlikely (ctx_terminated)) {
errno = ETERM;
return -1;
}
// Parse addr_ string.
std::string protocol;
std::string address;
int rc = parse_uri (addr_, protocol, address);
if (rc != 0)
return -1;
rc = check_protocol (protocol);
if (rc != 0)
return -1;
if (protocol == "inproc" || protocol == "sys") {
// TODO: inproc connect is specific with respect to creating pipes
// as there's no 'reconnect' functionality implemented. Once that
// is in place we should follow generic pipe creation algorithm.
// Find the peer endpoint.
endpoint_t peer = find_endpoint (addr_);
if (!peer.socket)
return -1;
// The total HWM for an inproc connection should be the sum of
// the binder's HWM and the connector's HWM.
int sndhwm;
int rcvhwm;
if (options.sndhwm == 0 || peer.options.rcvhwm == 0)
sndhwm = 0;
else
sndhwm = options.sndhwm + peer.options.rcvhwm;
if (options.rcvhwm == 0 || peer.options.sndhwm == 0)
rcvhwm = 0;
else
rcvhwm = options.rcvhwm + peer.options.sndhwm;
// Create a bi-directional pipe to connect the peers.
object_t *parents [2] = {this, peer.socket};
pipe_t *pipes [2] = {NULL, NULL};
int hwms [2] = {sndhwm, rcvhwm};
bool delays [2] = {options.delay_on_disconnect, options.delay_on_close};
int rc = pipepair (parents, pipes, hwms, delays);
errno_assert (rc == 0);
// Attach local end of the pipe to this socket object.
attach_pipe (pipes [0]);
// Attach remote end of the pipe to the peer socket. Note that peer's
// seqnum was incremented in find_endpoint function. We don't need it
// increased here.
send_bind (peer.socket, pipes [1], false);
return 0;
}
// Choose the I/O thread to run the session in.
io_thread_t *io_thread = choose_io_thread (options.affinity);
if (!io_thread) {
errno = EMTHREAD;
return -1;
}
// Create session.
session_base_t *session = session_base_t::create (io_thread, true, this,
options, protocol.c_str (), address.c_str ());
errno_assert (session);
// Create a bi-directional pipe.
object_t *parents [2] = {this, session};
pipe_t *pipes [2] = {NULL, NULL};
int hwms [2] = {options.sndhwm, options.rcvhwm};
bool delays [2] = {options.delay_on_disconnect, options.delay_on_close};
rc = pipepair (parents, pipes, hwms, delays);
errno_assert (rc == 0);
// Attach local end of the pipe to the socket object.
attach_pipe (pipes [0]);
// Attach remote end of the pipe to the session object later on.
session->attach_pipe (pipes [1]);
// Activate the session. Make it a child of this socket.
launch_child (session);
return 0;
}
int zmq::socket_base_t::send (msg_t *msg_, int flags_)
{
// Check whether the library haven't been shut down yet.
if (unlikely (ctx_terminated)) {
errno = ETERM;
return -1;
}
// Check whether message passed to the function is valid.
if (unlikely (!msg_->check ())) {
errno = EFAULT;
return -1;
}
// Process pending commands, if any.
int rc = process_commands (0, true);
if (unlikely (rc != 0))
return -1;
// At this point we impose the flags on the message.
if (flags_ & ZMQ_SNDMORE)
msg_->set_flags (msg_t::more);
// Try to send the message.
rc = xsend (msg_, flags_);
if (rc == 0)
return 0;
if (unlikely (errno != EAGAIN))
return -1;
// In case of non-blocking send we'll simply propagate
// the error - including EAGAIN - up the stack.
if (flags_ & ZMQ_DONTWAIT || options.sndtimeo == 0)
return -1;
// Compute the time when the timeout should occur.
// If the timeout is infite, don't care.
clock_t clock ;
int timeout = options.sndtimeo;
uint64_t end = timeout < 0 ? 0 : (clock.now_ms () + timeout);
// Oops, we couldn't send the message. Wait for the next
// command, process it and try to send the message again.
// If timeout is reached in the meantime, return EAGAIN.
while (true) {
if (unlikely (process_commands (timeout, false) != 0))
return -1;
rc = xsend (msg_, flags_);
if (rc == 0)
break;
if (unlikely (errno != EAGAIN))
return -1;
if (timeout > 0) {
timeout = (int) (end - clock.now_ms ());
if (timeout <= 0) {
errno = EAGAIN;
return -1;
}
}
}
return 0;
}
int zmq::socket_base_t::recv (msg_t *msg_, int flags_)
{
// Check whether the library haven't been shut down yet.
if (unlikely (ctx_terminated)) {
errno = ETERM;
return -1;
}
// Check whether message passed to the function is valid.
if (unlikely (!msg_->check ())) {
errno = EFAULT;
return -1;
}
// Get the message.
int rc = xrecv (msg_, flags_);
if (unlikely (rc != 0 && errno != EAGAIN))
return -1;
// Once every inbound_poll_rate messages check for signals and process
// incoming commands. This happens only if we are not polling altogether
// because there are messages available all the time. If poll occurs,
// ticks is set to zero and thus we avoid this code.
//
// Note that 'recv' uses different command throttling algorithm (the one
// described above) from the one used by 'send'. This is because counting
// ticks is more efficient than doing RDTSC all the time.
if (++ticks == inbound_poll_rate) {
if (unlikely (process_commands (0, false) != 0))
return -1;
ticks = 0;
}
// If we have the message, return immediately.
if (rc == 0) {
extract_flags (msg_);
return 0;
}
// If the message cannot be fetched immediately, there are two scenarios.
// For non-blocking recv, commands are processed in case there's an
// activate_reader command already waiting int a command pipe.
// If it's not, return EAGAIN.
if (flags_ & ZMQ_DONTWAIT || options.rcvtimeo == 0) {
if (unlikely (process_commands (0, false) != 0))
return -1;
ticks = 0;
rc = xrecv (msg_, flags_);
if (rc < 0)
return rc;
extract_flags (msg_);
return 0;
}
// Compute the time when the timeout should occur.
// If the timeout is infite, don't care.
clock_t clock ;
int timeout = options.rcvtimeo;
uint64_t end = timeout < 0 ? 0 : (clock.now_ms () + timeout);
// In blocking scenario, commands are processed over and over again until
// we are able to fetch a message.
bool block = (ticks != 0);
while (true) {
if (unlikely (process_commands (block ? timeout : 0, false) != 0))
return -1;
rc = xrecv (msg_, flags_);
if (rc == 0) {
ticks = 0;
break;
}
if (unlikely (errno != EAGAIN))
return -1;
block = true;
if (timeout > 0) {
timeout = (int) (end - clock.now_ms ());
if (timeout <= 0) {
errno = EAGAIN;
return -1;
}
}
}
extract_flags (msg_);
return 0;
}
int zmq::socket_base_t::close ()
{
// Transfer the ownership of the socket from this application thread
// to the reaper thread which will take care of the rest of shutdown
// process.
send_reap (this);
return 0;
}
bool zmq::socket_base_t::has_in ()
{
return xhas_in ();
}
bool zmq::socket_base_t::has_out ()
{
return xhas_out ();
}
void zmq::socket_base_t::start_reaping (poller_t *poller_)
{
// Plug the socket to the reaper thread.
poller = poller_;
handle = poller->add_fd (mailbox.get_fd (), this);
poller->set_pollin (handle);
// Initialise the termination and check whether it can be deallocated
// immediately.
terminate ();
check_destroy ();
}
int zmq::socket_base_t::process_commands (int timeout_, bool throttle_)
{
int rc;
command_t cmd;
if (timeout_ != 0) {
// If we are asked to wait, simply ask mailbox to wait.
rc = mailbox.recv (&cmd, timeout_);
}
else {
// If we are asked not to wait, check whether we haven't processed
// commands recently, so that we can throttle the new commands.
// Get the CPU's tick counter. If 0, the counter is not available.
uint64_t tsc = zmq::clock_t::rdtsc ();
// Optimised version of command processing - it doesn't have to check
// for incoming commands each time. It does so only if certain time
// elapsed since last command processing. Command delay varies
// depending on CPU speed: It's ~1ms on 3GHz CPU, ~2ms on 1.5GHz CPU
// etc. The optimisation makes sense only on platforms where getting
// a timestamp is a very cheap operation (tens of nanoseconds).
if (tsc && throttle_) {
// Check whether TSC haven't jumped backwards (in case of migration
// between CPU cores) and whether certain time have elapsed since
// last command processing. If it didn't do nothing.
if (tsc >= last_tsc && tsc - last_tsc <= max_command_delay)
return 0;
last_tsc = tsc;
}
// Check whether there are any commands pending for this thread.
rc = mailbox.recv (&cmd, 0);
}
// Process all the commands available at the moment.
while (true) {
if (rc == -1 && errno == EAGAIN)
break;
if (rc == -1 && errno == EINTR)
return -1;
errno_assert (rc == 0);
cmd.destination->process_command (cmd);
rc = mailbox.recv (&cmd, 0);
}
if (ctx_terminated) {
errno = ETERM;
return -1;
}
return 0;
}
void zmq::socket_base_t::process_stop ()
{
// Here, someone have called zmq_term while the socket was still alive.
// We'll remember the fact so that any blocking call is interrupted and any
// further attempt to use the socket will return ETERM. The user is still
// responsible for calling zmq_close on the socket though!
ctx_terminated = true;
}
void zmq::socket_base_t::process_bind (pipe_t *pipe_)
{
attach_pipe (pipe_);
}
void zmq::socket_base_t::process_unplug ()
{
}
void zmq::socket_base_t::process_term (int linger_)
{
// Unregister all inproc endpoints associated with this socket.
// Doing this we make sure that no new pipes from other sockets (inproc)
// will be initiated.
unregister_endpoints (this);
// Ask all attached pipes to terminate.
for (pipes_t::size_type i = 0; i != pipes.size (); ++i)
pipes [i]->terminate (false);
register_term_acks ((int) pipes.size ());
// Continue the termination process immediately.
own_t::process_term (linger_);
}
void zmq::socket_base_t::process_destroy ()
{
destroyed = true;
}
int zmq::socket_base_t::xsetsockopt (int option_, const void *optval_,
size_t optvallen_)
{
errno = EINVAL;
return -1;
}
bool zmq::socket_base_t::xhas_out ()
{
return false;
}
int zmq::socket_base_t::xsend (msg_t *msg_, int flags_)
{
errno = ENOTSUP;
return -1;
}
bool zmq::socket_base_t::xhas_in ()
{
return false;
}
int zmq::socket_base_t::xrecv (msg_t *msg_, int flags_)
{
errno = ENOTSUP;
return -1;
}
void zmq::socket_base_t::xread_activated (pipe_t *pipe_)
{
zmq_assert (false);
}
void zmq::socket_base_t::xwrite_activated (pipe_t *pipe_)
{
zmq_assert (false);
}
void zmq::socket_base_t::xhiccuped (pipe_t *pipe_)
{
zmq_assert (false);
}
void zmq::socket_base_t::in_event ()
{
// This function is invoked only once the socket is running in the context
// of the reaper thread. Process any commands from other threads/sockets
// that may be available at the moment. Ultimately, the socket will
// be destroyed.
process_commands (0, false);
check_destroy ();
}
void zmq::socket_base_t::out_event ()
{
zmq_assert (false);
}
void zmq::socket_base_t::timer_event (int id_)
{
zmq_assert (false);
}
void zmq::socket_base_t::check_destroy ()
{
// If the object was already marked as destroyed, finish the deallocation.
if (destroyed) {
// Remove the socket from the reaper's poller.
poller->rm_fd (handle);
// Remove the socket from the context.
destroy_socket (this);
// Notify the reaper about the fact.
send_reaped ();
// Deallocate.
own_t::process_destroy ();
}
}
void zmq::socket_base_t::read_activated (pipe_t *pipe_)
{
xread_activated (pipe_);
}
void zmq::socket_base_t::write_activated (pipe_t *pipe_)
{
xwrite_activated (pipe_);
}
void zmq::socket_base_t::hiccuped (pipe_t *pipe_)
{
xhiccuped (pipe_);
}
void zmq::socket_base_t::terminated (pipe_t *pipe_)
{
// Notify the specific socket type about the pipe termination.
xterminated (pipe_);
// Remove the pipe from the list of attached pipes and confirm its
// termination if we are already shutting down.
pipes.erase (pipe_);
if (is_terminating ())
unregister_term_ack ();
}
void zmq::socket_base_t::extract_flags (msg_t *msg_)
{
rcvmore = msg_->flags () & msg_t::more ? true : false;
if (rcvmore)
msg_->reset_flags (msg_t::more);
}