/*
Copyright (c) 2009-2012 250bpm s.r.o.
Copyright (c) 2007-2009 iMatix Corporation
Copyright (c) 2011 VMware, Inc.
Copyright (c) 2007-2011 Other contributors as noted in the AUTHORS file
This file is part of Crossroads I/O project.
Crossroads I/O is free software; you can redistribute it and/or modify it
under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
Crossroads is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program. If not, see .
*/
#include
#include
#include
#include "platform.hpp"
#if defined XS_HAVE_WINDOWS
#include "windows.hpp"
#if defined _MSC_VER
#include
#endif
#else
#include
#endif
#ifdef XS_HAVE_OPENPGM
#include "pgm_socket.hpp"
#endif
#include "socket_base.hpp"
#include "tcp_listener.hpp"
#include "ipc_listener.hpp"
#include "tcp_connecter.hpp"
#include "ipc_connecter.hpp"
#include "io_thread.hpp"
#include "session_base.hpp"
#include "config.hpp"
#include "pipe.hpp"
#include "err.hpp"
#include "ctx.hpp"
#include "platform.hpp"
#include "likely.hpp"
#include "msg.hpp"
#include "pair.hpp"
#include "pub.hpp"
#include "sub.hpp"
#include "req.hpp"
#include "rep.hpp"
#include "pull.hpp"
#include "push.hpp"
#include "xreq.hpp"
#include "xrep.hpp"
#include "xpub.hpp"
#include "xsub.hpp"
#include "surveyor.hpp"
#include "xsurveyor.hpp"
#include "respondent.hpp"
#include "xrespondent.hpp"
bool xs::socket_base_t::check_tag ()
{
return tag == 0xbaddecaf;
}
xs::socket_base_t *xs::socket_base_t::create (int type_, class ctx_t *parent_,
uint32_t tid_, int sid_)
{
socket_base_t *s = NULL;
switch (type_) {
case XS_PAIR:
s = new (std::nothrow) pair_t (parent_, tid_, sid_);
break;
case XS_PUB:
s = new (std::nothrow) pub_t (parent_, tid_, sid_);
break;
case XS_SUB:
s = new (std::nothrow) sub_t (parent_, tid_, sid_);
break;
case XS_REQ:
s = new (std::nothrow) req_t (parent_, tid_, sid_);
break;
case XS_REP:
s = new (std::nothrow) rep_t (parent_, tid_, sid_);
break;
case XS_XREQ:
s = new (std::nothrow) xreq_t (parent_, tid_, sid_);
break;
case XS_XREP:
s = new (std::nothrow) xrep_t (parent_, tid_, sid_);
break;
case XS_PULL:
s = new (std::nothrow) pull_t (parent_, tid_, sid_);
break;
case XS_PUSH:
s = new (std::nothrow) push_t (parent_, tid_, sid_);
break;
case XS_XPUB:
s = new (std::nothrow) xpub_t (parent_, tid_, sid_);
break;
case XS_XSUB:
s = new (std::nothrow) xsub_t (parent_, tid_, sid_);
break;
case XS_SURVEYOR:
s = new (std::nothrow) surveyor_t (parent_, tid_, sid_);
break;
case XS_XSURVEYOR:
s = new (std::nothrow) xsurveyor_t (parent_, tid_, sid_);
break;
case XS_RESPONDENT:
s = new (std::nothrow) respondent_t (parent_, tid_, sid_);
break;
case XS_XRESPONDENT:
s = new (std::nothrow) xrespondent_t (parent_, tid_, sid_);
break;
default:
errno = EINVAL;
return NULL;
}
alloc_assert (s);
int rc = s->init ();
if (rc != 0)
return NULL;
return s;
}
xs::socket_base_t::socket_base_t (ctx_t *parent_, uint32_t tid_, int sid_) :
own_t (parent_, tid_),
tag (0xbaddecaf),
ctx_terminated (false),
destroyed (false),
initialised (false),
last_tsc (0),
ticks (0),
rcvmore (false)
{
options.socket_id = sid_;
}
int xs::socket_base_t::init ()
{
xs_assert (!initialised);
int rc = mailbox_init (&mailbox);
if (rc != 0) {
destroyed = true;
delete this;
return -1;
}
initialised = true;
return 0;
}
xs::socket_base_t::~socket_base_t ()
{
xs_assert (destroyed);
if (initialised)
mailbox_close (&mailbox);
}
xs::mailbox_t *xs::socket_base_t::get_mailbox ()
{
return &mailbox;
}
void xs::socket_base_t::stop ()
{
// Called by ctx when it is terminated (xs_term).
// 'stop' command is sent from the threads that called xs_term to
// the thread owning the socket. This way, blocking call in the
// owner thread can be interrupted.
send_stop ();
}
int xs::socket_base_t::parse_uri (const char *uri_,
std::string &protocol_, std::string &address_)
{
xs_assert (uri_ != NULL);
std::string uri (uri_);
std::string::size_type pos = uri.find ("://");
if (pos == std::string::npos) {
errno = EINVAL;
return -1;
}
protocol_ = uri.substr (0, pos);
address_ = uri.substr (pos + 3);
if (protocol_.empty () || address_.empty ()) {
errno = EINVAL;
return -1;
}
return 0;
}
int xs::socket_base_t::check_protocol (const std::string &protocol_)
{
// First check out whether the protcol is something we are aware of.
if (protocol_ != "inproc" && protocol_ != "ipc" && protocol_ != "tcp" &&
protocol_ != "pgm" && protocol_ != "epgm" && protocol_ != "udp") {
errno = EPROTONOSUPPORT;
return -1;
}
// If Crossroads is not compiled with OpenPGM, pgm and epgm transports
// are not avaialble.
#if !defined XS_HAVE_OPENPGM
if (protocol_ == "pgm" || protocol_ == "epgm") {
errno = EPROTONOSUPPORT;
return -1;
}
#endif
// IPC transport is not available on Windows and OpenVMS.
#if defined XS_HAVE_WINDOWS || defined XS_HAVE_OPENVMS
if (protocol_ == "ipc") {
// Unknown protocol.
errno = EPROTONOSUPPORT;
return -1;
}
#endif
// Check whether socket type and transport protocol match.
// Specifically, multicast protocols can't be combined with
// bi-directional messaging patterns (socket types).
if ((protocol_ == "pgm" || protocol_ == "epgm" || protocol_ == "udp") &&
options.type != XS_PUB && options.type != XS_SUB &&
options.type != XS_XPUB && options.type != XS_XSUB) {
errno = ENOCOMPATPROTO;
return -1;
}
// Protocol is available.
return 0;
}
void xs::socket_base_t::attach_pipe (pipe_t *pipe_, bool icanhasall_)
{
// First, register the pipe so that we can terminate it later on.
pipe_->set_event_sink (this);
pipes.push_back (pipe_);
// Let the derived socket type know about new pipe.
xattach_pipe (pipe_, icanhasall_);
// If the socket is already being closed, ask any new pipes to terminate
// straight away.
if (is_terminating ()) {
register_term_acks (1);
pipe_->terminate (false);
}
}
int xs::socket_base_t::setsockopt (int option_, const void *optval_,
size_t optvallen_)
{
if (unlikely (ctx_terminated)) {
errno = ETERM;
return -1;
}
// First, check whether specific socket type overloads the option.
int rc = xsetsockopt (option_, optval_, optvallen_);
if (rc == 0 || errno != EINVAL)
return rc;
// If the socket type doesn't support the option, pass it to
// the generic option parser.
rc = options.setsockopt (option_, optval_, optvallen_);
return rc;
}
int xs::socket_base_t::getsockopt (int option_, void *optval_,
size_t *optvallen_)
{
if (unlikely (ctx_terminated)) {
errno = ETERM;
return -1;
}
if (option_ == XS_RCVMORE) {
if (*optvallen_ < sizeof (int)) {
errno = EINVAL;
return -1;
}
*((int*) optval_) = rcvmore ? 1 : 0;
*optvallen_ = sizeof (int);
return 0;
}
if (option_ == XS_FD) {
if (*optvallen_ < sizeof (fd_t)) {
errno = EINVAL;
return -1;
}
*((fd_t*) optval_) = mailbox_fd (&mailbox);
*optvallen_ = sizeof (fd_t);
return 0;
}
if (option_ == XS_EVENTS) {
if (*optvallen_ < sizeof (int)) {
errno = EINVAL;
return -1;
}
int rc = process_commands (0, false);
if (rc != 0 && (errno == EINTR || errno == ETERM))
return -1;
errno_assert (rc == 0);
*((int*) optval_) = 0;
if (has_out ())
*((int*) optval_) |= XS_POLLOUT;
if (has_in ())
*((int*) optval_) |= XS_POLLIN;
*optvallen_ = sizeof (int);
return 0;
}
return options.getsockopt (option_, optval_, optvallen_);
}
int xs::socket_base_t::bind (const char *addr_)
{
if (unlikely (ctx_terminated)) {
errno = ETERM;
return -1;
}
// Parse addr_ string.
std::string protocol;
std::string address;
int rc = parse_uri (addr_, protocol, address);
if (rc != 0)
return -1;
rc = check_protocol (protocol);
if (rc != 0)
return -1;
if (protocol == "inproc") {
endpoint_t endpoint = {this, options};
rc = register_endpoint (addr_, endpoint);
if (rc != 0)
return -1;
// Endpoint IDs for inproc transport are not implemented at the
// moment. Thus we return 0 to the user.
return 0;
}
if (protocol == "pgm" || protocol == "epgm" || protocol == "udp") {
// For convenience's sake, bind can be used interchageable with
// connect for PGM and EPGM transports.
rc = connect (addr_);
return rc;
}
// Remaining trasnports require to be run in an I/O thread, so at this
// point we'll choose one.
io_thread_t *thread = choose_io_thread (options.affinity);
xs_assert (thread);
if (protocol == "tcp") {
tcp_listener_t *listener = new (std::nothrow) tcp_listener_t (
thread, this, options);
alloc_assert (listener);
rc = listener->set_address (address.c_str ());
if (rc != 0) {
delete listener;
return -1;
}
launch_child (listener);
return add_endpoint (listener);
}
#if !defined XS_HAVE_WINDOWS && !defined XS_HAVE_OPENVMS
if (protocol == "ipc") {
ipc_listener_t *listener = new (std::nothrow) ipc_listener_t (
thread, this, options);
alloc_assert (listener);
rc = listener->set_address (address.c_str ());
if (rc != 0) {
delete listener;
return -1;
}
launch_child (listener);
return add_endpoint (listener);
}
#endif
xs_assert (false);
return -1;
}
int xs::socket_base_t::connect (const char *addr_)
{
if (unlikely (ctx_terminated)) {
errno = ETERM;
return -1;
}
// Parse addr_ string.
std::string protocol;
std::string address;
int rc = parse_uri (addr_, protocol, address);
if (rc != 0)
return -1;
rc = check_protocol (protocol);
if (rc != 0)
return -1;
if (protocol == "inproc") {
// TODO: inproc connect is specific with respect to creating pipes
// as there's no 'reconnect' functionality implemented. Once that
// is in place we should follow generic pipe creation algorithm.
// Find the peer endpoint.
endpoint_t peer = find_endpoint (addr_);
if (!peer.socket)
return -1;
// The total HWM for an inproc connection should be the sum of
// the binder's HWM and the connector's HWM.
int sndhwm;
int rcvhwm;
if (options.sndhwm == 0 || peer.options.rcvhwm == 0)
sndhwm = 0;
else
sndhwm = options.sndhwm + peer.options.rcvhwm;
if (options.rcvhwm == 0 || peer.options.sndhwm == 0)
rcvhwm = 0;
else
rcvhwm = options.rcvhwm + peer.options.sndhwm;
// Create a bi-directional pipe to connect the peers.
object_t *parents [2] = {this, peer.socket};
pipe_t *ppair [2] = {NULL, NULL};
int hwms [2] = {sndhwm, rcvhwm};
bool delays [2] = {options.delay_on_disconnect, options.delay_on_close};
rc = pipepair (parents, ppair, hwms, delays, options.protocol);
errno_assert (rc == 0);
// Attach local end of the pipe to this socket object.
attach_pipe (ppair [0]);
// If required, send the identity of the local socket to the peer.
if (options.send_identity) {
msg_t id;
rc = id.init_size (options.identity_size);
errno_assert (rc == 0);
memcpy (id.data (), options.identity, options.identity_size);
id.set_flags (msg_t::identity);
bool written = ppair [0]->write (&id);
xs_assert (written);
pipes [0]->flush ();
}
// If required, send the identity of the peer to the local socket.
if (peer.options.send_identity) {
msg_t id;
rc = id.init_size (peer.options.identity_size);
errno_assert (rc == 0);
memcpy (id.data (), peer.options.identity,
peer.options.identity_size);
id.set_flags (msg_t::identity);
bool written = ppair [1]->write (&id);
xs_assert (written);
ppair [1]->flush ();
}
// Attach remote end of the pipe to the peer socket. Note that peer's
// seqnum was incremented in find_endpoint function. We don't need it
// increased here.
send_bind (peer.socket, ppair [1], false);
// Inproc endpoints are not yet implemented thus we return 0.
return 0;
}
// Choose the I/O thread to run the session in.
io_thread_t *thread = choose_io_thread (options.affinity);
xs_assert (thread);
if (protocol == "tcp") {
tcp_connecter_t connecter (thread, NULL, options, false);
int rc = connecter.set_address (address.c_str());
if (rc != 0) {
return -1;
}
}
#if !defined XS_HAVE_WINDOWS && !defined XS_HAVE_OPENVMS
if (protocol == "ipc") {
ipc_connecter_t connecter (thread, NULL, options, false);
int rc = connecter.set_address (address.c_str());
if (rc != 0) {
return -1;
}
}
#endif
#ifdef XS_HAVE_OPENPGM
if (protocol == "pgm" || protocol == "epgm") {
struct pgm_addrinfo_t *res = NULL;
uint16_t port_number = 0;
int rc = pgm_socket_t::init_address(address.c_str(), &res, &port_number);
if (res != NULL)
pgm_freeaddrinfo (res);
if (rc != 0 || port_number == 0)
return -1;
}
#endif
// Create session.
session_base_t *session = session_base_t::create (thread, true, this,
options, protocol.c_str (), address.c_str ());
errno_assert (session);
// Create a bi-directional pipe.
object_t *parents [2] = {this, session};
pipe_t *ppair [2] = {NULL, NULL};
int hwms [2] = {options.sndhwm, options.rcvhwm};
bool delays [2] = {options.delay_on_disconnect, options.delay_on_close};
rc = pipepair (parents, ppair, hwms, delays, options.protocol);
errno_assert (rc == 0);
// PGM does not support subscription forwarding; ask for all data to be
// sent to this pipe.
bool icanhasall = false;
if (protocol == "pgm" || protocol == "epgm")
icanhasall = true;
// Attach local end of the pipe to the socket object.
attach_pipe (ppair [0], icanhasall);
// Attach remote end of the pipe to the session object later on.
session->attach_pipe (ppair [1]);
// Activate the session. Make it a child of this socket.
launch_child (session);
return add_endpoint (session);
}
int xs::socket_base_t::shutdown (int how_)
{
// Check whether the library haven't been shut down yet.
if (unlikely (ctx_terminated)) {
errno = ETERM;
return -1;
}
// Endpoint ID means 'shutdown not implemented'.
if (how_ <= 0) {
errno = ENOTSUP;
return -1;
}
// Find the endpoint corresponding to the ID.
endpoints_t::iterator it = endpoints.find (how_);
if (it == endpoints.end ()) {
errno = EINVAL;
return -1;
}
process_term_req (it->second);
endpoints.erase (it);
return 0;
}
int xs::socket_base_t::send (msg_t *msg_, int flags_)
{
// Check whether the library haven't been shut down yet.
if (unlikely (ctx_terminated)) {
errno = ETERM;
return -1;
}
// Check whether message passed to the function is valid.
if (unlikely (!msg_ || !msg_->check ())) {
errno = EFAULT;
return -1;
}
// Process pending commands, if any.
int rc = process_commands (0, true);
if (unlikely (rc != 0))
return -1;
// Clear any user-visible flags that are set on the message.
msg_->reset_flags (msg_t::more);
// At this point we impose the flags on the message.
if (flags_ & XS_SNDMORE)
msg_->set_flags (msg_t::more);
// Try to send the message.
rc = xsend (msg_, flags_);
if (rc == 0)
return 0;
if (unlikely (errno != EAGAIN))
return -1;
int timeout = sndtimeo ();
if (flags_ & XS_DONTWAIT || timeout == 0) {
// It looks like pipe is full. However, previous process_commands may
// have done nothing because of the throttling. Thus, let's give it
// last try and force commands to be processed. Then try to re-send
// the message.
rc = process_commands (0, false);
if (unlikely (rc != 0))
return -1;
return xsend (msg_, flags_);
}
// Compute the time when the timeout should occur.
// If the timeout is infite, don't care.
uint64_t end = timeout < 0 ? 0 : (clock.now_ms () + timeout);
// Oops, we couldn't send the message. Wait for the next
// command, process it and try to send the message again.
// If timeout is reached in the meantime, return EAGAIN.
while (true) {
if (unlikely (process_commands (timeout, false) != 0))
return -1;
rc = xsend (msg_, flags_);
if (rc == 0)
break;
if (unlikely (errno != EAGAIN))
return -1;
if (timeout > 0) {
timeout = (int) (end - clock.now_ms ());
if (timeout <= 0) {
errno = EAGAIN;
return -1;
}
}
}
return 0;
}
int xs::socket_base_t::recv (msg_t *msg_, int flags_)
{
// Check whether the library haven't been shut down yet.
if (unlikely (ctx_terminated)) {
errno = ETERM;
return -1;
}
// Check whether message passed to the function is valid.
if (unlikely (!msg_ || !msg_->check ())) {
errno = EFAULT;
return -1;
}
// Get the message.
int rc = xrecv (msg_, flags_);
if (unlikely (rc != 0 && errno != EAGAIN))
return -1;
// Once every inbound_poll_rate messages check for signals and process
// incoming commands. This happens only if we are not polling altogether
// because there are messages available all the time. If poll occurs,
// ticks is set to zero and thus we avoid this code.
//
// Note that 'recv' uses different command throttling algorithm (the one
// described above) from the one used by 'send'. This is because counting
// ticks is more efficient than doing RDTSC all the time.
if (++ticks == inbound_poll_rate) {
if (unlikely (process_commands (0, false) != 0))
return -1;
ticks = 0;
}
// If we have the message, return immediately.
if (rc == 0) {
extract_flags (msg_);
return 0;
}
// If the message cannot be fetched immediately, there are two scenarios.
// For non-blocking recv, commands are processed in case there's an
// activate_reader command already waiting int a command pipe.
// If it's not, return EAGAIN.
int timeout = rcvtimeo ();
if (flags_ & XS_DONTWAIT || timeout == 0) {
if (unlikely (process_commands (0, false) != 0))
return -1;
ticks = 0;
rc = xrecv (msg_, flags_);
if (rc < 0)
return rc;
extract_flags (msg_);
return 0;
}
// Compute the time when the timeout should occur.
// If the timeout is infite, don't care.
uint64_t end = timeout < 0 ? 0 : (clock.now_ms () + timeout);
// In blocking scenario, commands are processed over and over again until
// we are able to fetch a message.
bool block = (ticks != 0);
while (true) {
if (unlikely (process_commands (block ? timeout : 0, false) != 0))
return -1;
rc = xrecv (msg_, flags_);
if (rc == 0) {
ticks = 0;
break;
}
if (unlikely (errno != EAGAIN))
return -1;
block = true;
if (timeout > 0) {
timeout = (int) (end - clock.now_ms ());
if (timeout <= 0) {
errno = EAGAIN;
return -1;
}
}
}
extract_flags (msg_);
return 0;
}
int xs::socket_base_t::close ()
{
// Mark the socket as dead.
tag = 0xdeadbeef;
// Transfer the ownership of the socket from this application thread
// to the reaper thread which will take care of the rest of shutdown
// process.
send_reap (this);
return 0;
}
bool xs::socket_base_t::has_in ()
{
bool ret = xhas_in ();
return ret;
}
bool xs::socket_base_t::has_out ()
{
bool ret = xhas_out ();
return ret;
}
void xs::socket_base_t::start_reaping (io_thread_t *io_thread_)
{
// Plug the socket to the reaper thread.
io_thread = io_thread_;
handle = io_thread->add_fd (mailbox_fd (&mailbox), this);
io_thread->set_pollin (handle);
// Initialise the termination and check whether it can be deallocated
// immediately.
terminate ();
check_destroy ();
}
int xs::socket_base_t::process_commands (int timeout_, bool throttle_)
{
int rc;
command_t cmd;
if (timeout_ != 0) {
// If we are asked to wait, simply ask mailbox to wait.
rc = mailbox_recv (&mailbox, &cmd, timeout_);
}
else {
// If we are asked not to wait, check whether we haven't processed
// commands recently, so that we can throttle the new commands.
// This doesn't apply when the throttling is turned off.
if (throttle_) {
// Get the CPU's tick counter. If 0, the counter is not available.
uint64_t tsc = xs::clock_t::rdtsc ();
// Optimised version of command processing - it doesn't have to
// check for incoming commands each time. It does so only if
// certain time elapsed since last command processing. Command
// delay varies depending on CPU speed: With max_command_delay set
// to 3000000 it's ~1ms on 3GHz CPU, ~2ms on 1.5GHz CPU etc.
// The optimisation makes sense only on platforms where getting
// timestamp is a very cheap operation (tens of nanoseconds).
if (tsc) {
// Check whether TSC haven't jumped backwards (in case of
// migration between CPU cores) and whether certain time have
// elapsed since last command processing. If it didn't do
// nothing.
if (tsc >= last_tsc && tsc - last_tsc <= max_command_delay)
return 0;
last_tsc = tsc;
}
}
// Check whether there are any commands pending for this thread.
rc = mailbox_recv (&mailbox, &cmd, 0);
}
// Process all the commands available at the moment.
while (true) {
if (rc == -1 && errno == EAGAIN)
break;
if (rc == -1 && errno == EINTR)
return -1;
errno_assert (rc == 0);
cmd.destination->process_command (cmd);
rc = mailbox_recv (&mailbox, &cmd, 0);
}
if (ctx_terminated) {
errno = ETERM;
return -1;
}
return 0;
}
void xs::socket_base_t::process_stop ()
{
// Here, someone have called xs_term while the socket was still alive.
// We'll remember the fact so that any blocking call is interrupted and any
// further attempt to use the socket will return ETERM. The user is still
// responsible for calling xs_close on the socket though!
ctx_terminated = true;
}
void xs::socket_base_t::process_bind (pipe_t *pipe_)
{
attach_pipe (pipe_);
}
void xs::socket_base_t::process_unplug ()
{
}
void xs::socket_base_t::process_term (int linger_)
{
// Unregister all inproc endpoints associated with this socket.
// Doing this we make sure that no new pipes from other sockets (inproc)
// will be initiated.
unregister_endpoints (this);
// Ask all attached pipes to terminate.
for (pipes_t::size_type i = 0; i != pipes.size (); ++i)
pipes [i]->terminate (false);
register_term_acks ((int) pipes.size ());
// Continue the termination process immediately.
own_t::process_term (linger_);
}
void xs::socket_base_t::process_destroy ()
{
destroyed = true;
}
int xs::socket_base_t::xsetsockopt (int option_, const void *optval_,
size_t optvallen_)
{
errno = EINVAL;
return -1;
}
bool xs::socket_base_t::xhas_out ()
{
return false;
}
int xs::socket_base_t::xsend (msg_t *msg_, int flags_)
{
errno = ENOTSUP;
return -1;
}
bool xs::socket_base_t::xhas_in ()
{
return false;
}
int xs::socket_base_t::xrecv (msg_t *msg_, int flags_)
{
errno = ENOTSUP;
return -1;
}
void xs::socket_base_t::xread_activated (pipe_t *pipe_)
{
xs_assert (false);
}
void xs::socket_base_t::xwrite_activated (pipe_t *pipe_)
{
xs_assert (false);
}
void xs::socket_base_t::xhiccuped (pipe_t *pipe_)
{
xs_assert (false);
}
void xs::socket_base_t::in_event (fd_t fd_)
{
// This function is invoked only once the socket is running in the context
// of the reaper thread. Process any commands from other threads/sockets
// that may be available at the moment. Ultimately, the socket will
// be destroyed.
process_commands (0, false);
check_destroy ();
}
void xs::socket_base_t::out_event (fd_t fd_)
{
xs_assert (false);
}
void xs::socket_base_t::timer_event (handle_t handle_)
{
xs_assert (false);
}
void xs::socket_base_t::check_destroy ()
{
// If the object was already marked as destroyed, finish the deallocation.
if (destroyed) {
// Remove the socket from the reaper's I/O thread.
io_thread->rm_fd (handle);
// Remove the socket from the context.
destroy_socket (this);
// Notify the reaper about the fact.
send_reaped ();
// Deallocate.
own_t::process_destroy ();
}
}
void xs::socket_base_t::read_activated (pipe_t *pipe_)
{
xread_activated (pipe_);
}
void xs::socket_base_t::write_activated (pipe_t *pipe_)
{
xwrite_activated (pipe_);
}
void xs::socket_base_t::hiccuped (pipe_t *pipe_)
{
xhiccuped (pipe_);
}
void xs::socket_base_t::terminated (pipe_t *pipe_)
{
// Notify the specific socket type about the pipe termination.
xterminated (pipe_);
// Remove the pipe from the list of attached pipes and confirm its
// termination if we are already shutting down.
pipes.erase (pipe_);
if (is_terminating ())
unregister_term_ack ();
}
void xs::socket_base_t::extract_flags (msg_t *msg_)
{
// Test whether IDENTITY flag is valid for this socket type.
// TODO: Connection should be closed here!
if (unlikely (msg_->flags () & msg_t::identity))
xs_assert (options.recv_identity);
// Remove MORE flag.
rcvmore = msg_->flags () & msg_t::more ? true : false;
}
int xs::socket_base_t::rcvtimeo ()
{
return options.rcvtimeo;
}
int xs::socket_base_t::sndtimeo ()
{
return options.sndtimeo;
}
uint64_t xs::socket_base_t::now_ms ()
{
return clock.now_ms ();
}
int xs::socket_base_t::add_endpoint (own_t *endpoint_)
{
// Get a unique endpoint ID.
int id = 1;
for (endpoints_t::iterator it = endpoints.begin (); it != endpoints.end ();
++it, ++id)
if (it->first != id)
break;
// Remember the endpoint.
endpoints.insert (std::make_pair (id, endpoint_));
return id;
}