/*
Copyright (c) 2007-2010 iMatix Corporation
This file is part of 0MQ.
0MQ is free software; you can redistribute it and/or modify it under
the terms of the Lesser GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
0MQ is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Lesser GNU General Public License for more details.
You should have received a copy of the Lesser GNU General Public License
along with this program. If not, see .
*/
#include
#include
#include
#include "../include/zmq.h"
#include "platform.hpp"
#if defined ZMQ_HAVE_WINDOWS
#include "windows.hpp"
#if defined _MSC_VER
#include
#endif
#else
#include
#endif
#include "socket_base.hpp"
#include "zmq_listener.hpp"
#include "zmq_connecter.hpp"
#include "io_thread.hpp"
#include "session.hpp"
#include "config.hpp"
#include "owned.hpp"
#include "pipe.hpp"
#include "err.hpp"
#include "ctx.hpp"
#include "platform.hpp"
#include "pgm_sender.hpp"
#include "pgm_receiver.hpp"
#include "likely.hpp"
#include "pair.hpp"
#include "pub.hpp"
#include "sub.hpp"
#include "req.hpp"
#include "rep.hpp"
#include "pull.hpp"
#include "push.hpp"
#include "xreq.hpp"
#include "xrep.hpp"
#include "uuid.hpp"
// If the RDTSC is available we use it to prevent excessive
// polling for commands. The nice thing here is that it will work on any
// system with x86 architecture and gcc or MSVC compiler.
#if (defined __GNUC__ && (defined __i386__ || defined __x86_64__)) ||\
(defined _MSC_VER && (defined _M_IX86 || defined _M_X64))
#define ZMQ_DELAY_COMMANDS
#endif
zmq::socket_base_t *zmq::socket_base_t::create (int type_, class ctx_t *parent_,
uint32_t slot_)
{
socket_base_t *s = NULL;
switch (type_) {
case ZMQ_PAIR:
s = new (std::nothrow) pair_t (parent_, slot_);
break;
case ZMQ_PUB:
s = new (std::nothrow) pub_t (parent_, slot_);
break;
case ZMQ_SUB:
s = new (std::nothrow) sub_t (parent_, slot_);
break;
case ZMQ_REQ:
s = new (std::nothrow) req_t (parent_, slot_);
break;
case ZMQ_REP:
s = new (std::nothrow) rep_t (parent_, slot_);
break;
case ZMQ_XREQ:
s = new (std::nothrow) xreq_t (parent_, slot_);
break;
case ZMQ_XREP:
s = new (std::nothrow) xrep_t (parent_, slot_);
break;
case ZMQ_PULL:
s = new (std::nothrow) pull_t (parent_, slot_);
break;
case ZMQ_PUSH:
s = new (std::nothrow) push_t (parent_, slot_);
break;
default:
errno = EINVAL;
return NULL;
}
zmq_assert (s);
return s;
}
zmq::socket_base_t::socket_base_t (ctx_t *parent_, uint32_t slot_) :
object_t (parent_, slot_),
zombie (false),
last_processing_time (0),
pending_term_acks (0),
ticks (0),
rcvmore (false),
sent_seqnum (0),
processed_seqnum (0),
next_ordinal (1)
{
}
zmq::socket_base_t::~socket_base_t ()
{
}
zmq::signaler_t *zmq::socket_base_t::get_signaler ()
{
return &signaler;
}
void zmq::socket_base_t::stop ()
{
// Called by ctx when it is terminated (zmq_term).
// 'stop' command is sent from the threads that called zmq_term to
// the thread owning the socket. This way, blocking call in the
// owner thread can be interrupted.
send_stop ();
}
void zmq::socket_base_t::attach_pipes (class reader_t *inpipe_,
class writer_t *outpipe_, const blob_t &peer_identity_)
{
// If the peer haven't specified it's identity, let's generate one.
if (peer_identity_.size ()) {
xattach_pipes (inpipe_, outpipe_, peer_identity_);
}
else {
blob_t identity (1, 0);
identity.append (uuid_t ().to_blob (), uuid_t::uuid_blob_len);
xattach_pipes (inpipe_, outpipe_, identity);
}
}
int zmq::socket_base_t::setsockopt (int option_, const void *optval_,
size_t optvallen_)
{
if (unlikely (zombie)) {
errno = ETERM;
return -1;
}
// First, check whether specific socket type overloads the option.
int rc = xsetsockopt (option_, optval_, optvallen_);
if (rc == 0 || errno != EINVAL)
return rc;
// If the socket type doesn't support the option, pass it to
// the generic option parser.
return options.setsockopt (option_, optval_, optvallen_);
}
int zmq::socket_base_t::getsockopt (int option_, void *optval_,
size_t *optvallen_)
{
if (unlikely (zombie)) {
errno = ETERM;
return -1;
}
if (option_ == ZMQ_RCVMORE) {
if (*optvallen_ < sizeof (int64_t)) {
errno = EINVAL;
return -1;
}
*((int64_t*) optval_) = rcvmore ? 1 : 0;
*optvallen_ = sizeof (int64_t);
return 0;
}
if (option_ == ZMQ_FD) {
if (*optvallen_ < sizeof (fd_t)) {
errno = EINVAL;
return -1;
}
*((fd_t*) optval_) = signaler.get_fd ();
*optvallen_ = sizeof (fd_t);
return 0;
}
if (option_ == ZMQ_EVENTS) {
if (*optvallen_ < sizeof (uint32_t)) {
errno = EINVAL;
return -1;
}
process_commands(false, false);
*((uint32_t*) optval_) = 0;
if (has_out ())
*((uint32_t*) optval_) |= ZMQ_POLLOUT;
if (has_in ())
*((uint32_t*) optval_) |= ZMQ_POLLIN;
*optvallen_ = sizeof (uint32_t);
return 0;
}
return options.getsockopt (option_, optval_, optvallen_);
}
int zmq::socket_base_t::bind (const char *addr_)
{
if (unlikely (zombie)) {
errno = ETERM;
return -1;
}
// Parse addr_ string.
std::string addr_type;
std::string addr_args;
std::string addr (addr_);
std::string::size_type pos = addr.find ("://");
if (pos == std::string::npos) {
errno = EINVAL;
return -1;
}
addr_type = addr.substr (0, pos);
addr_args = addr.substr (pos + 3);
if (addr_type == "inproc")
return register_endpoint (addr_args.c_str (), this);
if (addr_type == "tcp" || addr_type == "ipc") {
#if defined ZMQ_HAVE_WINDOWS || defined ZMQ_HAVE_OPENVMS
if (addr_type == "ipc") {
errno = EPROTONOSUPPORT;
return -1;
}
#endif
zmq_listener_t *listener = new (std::nothrow) zmq_listener_t (
choose_io_thread (options.affinity), this, options);
zmq_assert (listener);
int rc = listener->set_address (addr_type.c_str(), addr_args.c_str ());
if (rc != 0) {
delete listener;
return -1;
}
send_plug (listener);
send_own (this, listener);
return 0;
}
#if defined ZMQ_HAVE_OPENPGM
if (addr_type == "pgm" || addr_type == "epgm") {
// In the case of PGM bind behaves the same like connect.
return connect (addr_);
}
#endif
// Unknown protocol.
errno = EPROTONOSUPPORT;
return -1;
}
int zmq::socket_base_t::connect (const char *addr_)
{
if (unlikely (zombie)) {
errno = ETERM;
return -1;
}
// Parse addr_ string.
std::string addr_type;
std::string addr_args;
std::string addr (addr_);
std::string::size_type pos = addr.find ("://");
if (pos == std::string::npos) {
errno = EINVAL;
return -1;
}
addr_type = addr.substr (0, pos);
addr_args = addr.substr (pos + 3);
if (addr_type == "inproc") {
// TODO: inproc connect is specific with respect to creating pipes
// as there's no 'reconnect' functionality implemented. Once that
// is in place we should follow generic pipe creation algorithm.
// Find the peer socket.
socket_base_t *peer = find_endpoint (addr_args.c_str ());
if (!peer)
return -1;
reader_t *inpipe_reader = NULL;
writer_t *inpipe_writer = NULL;
reader_t *outpipe_reader = NULL;
writer_t *outpipe_writer = NULL;
// Create inbound pipe, if required.
if (options.requires_in)
create_pipe (this, peer, options.hwm, options.swap,
&inpipe_reader, &inpipe_writer);
// Create outbound pipe, if required.
if (options.requires_out)
create_pipe (peer, this, options.hwm, options.swap,
&outpipe_reader, &outpipe_writer);
// Attach the pipes to this socket object.
attach_pipes (inpipe_reader, outpipe_writer, blob_t ());
// Attach the pipes to the peer socket. Note that peer's seqnum
// was incremented in find_endpoint function. The callee is notified
// about the fact via the last parameter.
send_bind (peer, outpipe_reader, inpipe_writer,
options.identity, false);
return 0;
}
// Create unnamed session.
io_thread_t *io_thread = choose_io_thread (options.affinity);
session_t *session = new (std::nothrow) session_t (io_thread,
this, options);
zmq_assert (session);
// If 'immediate connect' feature is required, we'll create the pipes
// to the session straight away. Otherwise, they'll be created by the
// session once the connection is established.
if (options.immediate_connect) {
reader_t *inpipe_reader = NULL;
writer_t *inpipe_writer = NULL;
reader_t *outpipe_reader = NULL;
writer_t *outpipe_writer = NULL;
// Create inbound pipe, if required.
if (options.requires_in)
create_pipe (this, session, options.hwm, options.swap,
&inpipe_reader, &inpipe_writer);
// Create outbound pipe, if required.
if (options.requires_out)
create_pipe (session, this, options.hwm, options.swap,
&outpipe_reader, &outpipe_writer);
// Attach the pipes to the socket object.
attach_pipes (inpipe_reader, outpipe_writer, blob_t ());
// Attach the pipes to the session object.
session->attach_pipes (outpipe_reader, inpipe_writer, blob_t ());
}
// Activate the session.
send_plug (session);
send_own (this, session);
if (addr_type == "tcp" || addr_type == "ipc") {
#if defined ZMQ_HAVE_WINDOWS || defined ZMQ_HAVE_OPENVMS
// Windows named pipes are not compatible with Winsock API.
// There's no UNIX domain socket implementation on OpenVMS.
if (addr_type == "ipc") {
errno = EPROTONOSUPPORT;
return -1;
}
#endif
// Create the connecter object. Supply it with the session name
// so that it can bind the new connection to the session once
// it is established.
zmq_connecter_t *connecter = new (std::nothrow) zmq_connecter_t (
choose_io_thread (options.affinity), this, options,
session->get_ordinal (), false);
zmq_assert (connecter);
int rc = connecter->set_address (addr_type.c_str(), addr_args.c_str ());
if (rc != 0) {
delete connecter;
return -1;
}
send_plug (connecter);
send_own (this, connecter);
return 0;
}
#if defined ZMQ_HAVE_OPENPGM
if (addr_type == "pgm" || addr_type == "epgm") {
// If the socket type requires bi-directional communication
// multicast is not an option (it is uni-directional).
if (options.requires_in && options.requires_out) {
errno = ENOCOMPATPROTO;
return -1;
}
// For epgm, pgm transport with UDP encapsulation is used.
bool udp_encapsulation = (addr_type == "epgm");
// At this point we'll create message pipes to the session straight
// away. There's no point in delaying it as no concept of 'connect'
// exists with PGM anyway.
if (options.requires_out) {
// PGM sender.
pgm_sender_t *pgm_sender = new (std::nothrow) pgm_sender_t (
choose_io_thread (options.affinity), options);
zmq_assert (pgm_sender);
int rc = pgm_sender->init (udp_encapsulation, addr_args.c_str ());
if (rc != 0) {
delete pgm_sender;
return -1;
}
send_attach (session, pgm_sender, blob_t ());
}
else if (options.requires_in) {
// PGM receiver.
pgm_receiver_t *pgm_receiver = new (std::nothrow) pgm_receiver_t (
choose_io_thread (options.affinity), options);
zmq_assert (pgm_receiver);
int rc = pgm_receiver->init (udp_encapsulation, addr_args.c_str ());
if (rc != 0) {
delete pgm_receiver;
return -1;
}
send_attach (session, pgm_receiver, blob_t ());
}
else
zmq_assert (false);
return 0;
}
#endif
// Unknown protoco.
errno = EPROTONOSUPPORT;
return -1;
}
int zmq::socket_base_t::send (::zmq_msg_t *msg_, int flags_)
{
if (unlikely (zombie)) {
errno = ETERM;
return -1;
}
// Process pending commands, if any.
process_commands (false, true);
if (unlikely (zombie)) {
errno = ETERM;
return -1;
}
// At this point we impose the MORE flag on the message.
if (flags_ & ZMQ_SNDMORE)
msg_->flags |= ZMQ_MSG_MORE;
// Try to send the message.
int rc = xsend (msg_, flags_);
if (rc == 0)
return 0;
// In case of non-blocking send we'll simply propagate
// the error - including EAGAIN - upwards.
if (flags_ & ZMQ_NOBLOCK)
return -1;
// Oops, we couldn't send the message. Wait for the next
// command, process it and try to send the message again.
while (rc != 0) {
if (errno != EAGAIN)
return -1;
process_commands (true, false);
if (unlikely (zombie)) {
errno = ETERM;
return -1;
}
rc = xsend (msg_, flags_);
}
return 0;
}
int zmq::socket_base_t::recv (::zmq_msg_t *msg_, int flags_)
{
if (unlikely (zombie)) {
errno = ETERM;
return -1;
}
// Get the message.
int rc = xrecv (msg_, flags_);
int err = errno;
// Once every inbound_poll_rate messages check for signals and process
// incoming commands. This happens only if we are not polling altogether
// because there are messages available all the time. If poll occurs,
// ticks is set to zero and thus we avoid this code.
//
// Note that 'recv' uses different command throttling algorithm (the one
// described above) from the one used by 'send'. This is because counting
// ticks is more efficient than doing rdtsc all the time.
if (++ticks == inbound_poll_rate) {
process_commands (false, false);
if (unlikely (zombie)) {
errno = ETERM;
return -1;
}
ticks = 0;
}
// If we have the message, return immediately.
if (rc == 0) {
rcvmore = msg_->flags & ZMQ_MSG_MORE;
if (rcvmore)
msg_->flags &= ~ZMQ_MSG_MORE;
return 0;
}
// If we don't have the message, restore the original cause of the problem.
errno = err;
// If the message cannot be fetched immediately, there are two scenarios.
// For non-blocking recv, commands are processed in case there's a revive
// command already waiting int a command pipe. If it's not, return EAGAIN.
if (flags_ & ZMQ_NOBLOCK) {
if (errno != EAGAIN)
return -1;
process_commands (false, false);
if (unlikely (zombie)) {
errno = ETERM;
return -1;
}
ticks = 0;
rc = xrecv (msg_, flags_);
if (rc == 0) {
rcvmore = msg_->flags & ZMQ_MSG_MORE;
if (rcvmore)
msg_->flags &= ~ZMQ_MSG_MORE;
}
return rc;
}
// In blocking scenario, commands are processed over and over again until
// we are able to fetch a message.
while (rc != 0) {
if (errno != EAGAIN)
return -1;
process_commands (true, false);
if (unlikely (zombie)) {
errno = ETERM;
return -1;
}
rc = xrecv (msg_, flags_);
ticks = 0;
}
rcvmore = msg_->flags & ZMQ_MSG_MORE;
if (rcvmore)
msg_->flags &= ~ZMQ_MSG_MORE;
return 0;
}
int zmq::socket_base_t::close ()
{
// Socket becomes a zombie. From now on all new arrived pipes (bind
// command) and I/O objects (own command) are immediately terminated.
// Also, any further requests form I/O object termination are ignored
// (we are going to shut them down anyway -- this way we assure that
// we do so once only).
zombie = true;
// Unregister all inproc endpoints associated with this socket.
// Doing this we make sure that no new pipes from other sockets (inproc)
// will be initiated. However, there may be some inproc pipes already
// on the fly, but not yet received by this socket. To get finished
// with them we'll do the subsequent waiting from on-the-fly commands.
// This should happen very quickly. There's no way to block here for
// extensive period of time.
unregister_endpoints (this);
while (processed_seqnum != sent_seqnum.get ())
process_commands (true, false);
// TODO: My feeling is that the above has to be done in the dezombification
// loop, otherwise we may end up with number of i/o object dropping to zero
// even though there are more i/o objects on the way.
// The above process ensures that only pipes that will arrive from now on
// are those initiated by sessions. These in turn have a nice property of
// not arriving totally asynchronously. When a session -- being an I/O
// object -- acknowledges its termination we are 100% sure that we'll get
// no new pipe from it.
// Start termination of all the pipes presently associated with the socket.
xterm_pipes ();
// Send termination request to all associated I/O objects.
// Start waiting for the acks. Note that the actual waiting is not done
// in this function. Rather it is done in delayed manner as socket is
// being dezombified. The reason is that I/O object shutdown can take
// considerable amount of time in case there's still a lot of data to
// push to the network.
for (io_objects_t::iterator it = io_objects.begin ();
it != io_objects.end (); it++)
send_term (*it);
pending_term_acks += io_objects.size ();
io_objects.clear ();
// Note that new I/O objects may arrive even in zombie state (say new
// session initiated by a listener object), however, in such case number
// of pending acks never drops to zero. Here's the scenario: We have an
// pending ack for the listener object. Then 'own' commands arrives from
// the listener notifying the socket about new session. It immediately
// triggers termination request and number of of pending acks if
// incremented. Then term_acks arrives from the listener. Number of pending
// acks is decremented. Later on, the session itself will ack its
// termination. During the process, number of pending acks never dropped
// to zero and thus the socket remains safely in the zombie state.
// Transfer the ownership of the socket from this application thread
// to the context which will take care of the rest of shutdown process.
zombify (this);
return 0;
}
void zmq::socket_base_t::inc_seqnum ()
{
// Be aware: This function may be called from a different thread!
sent_seqnum.add (1);
}
bool zmq::socket_base_t::has_in ()
{
return xhas_in ();
}
bool zmq::socket_base_t::has_out ()
{
return xhas_out ();
}
bool zmq::socket_base_t::register_session (const blob_t &peer_identity_,
session_t *session_)
{
sessions_sync.lock ();
bool registered = named_sessions.insert (
std::make_pair (peer_identity_, session_)).second;
sessions_sync.unlock ();
return registered;
}
void zmq::socket_base_t::unregister_session (const blob_t &peer_identity_)
{
sessions_sync.lock ();
named_sessions_t::iterator it = named_sessions.find (peer_identity_);
zmq_assert (it != named_sessions.end ());
named_sessions.erase (it);
sessions_sync.unlock ();
}
zmq::session_t *zmq::socket_base_t::find_session (const blob_t &peer_identity_)
{
sessions_sync.lock ();
named_sessions_t::iterator it = named_sessions.find (peer_identity_);
if (it == named_sessions.end ()) {
sessions_sync.unlock ();
return NULL;
}
session_t *session = it->second;
// Prepare the session for subsequent attach command.
session->inc_seqnum ();
sessions_sync.unlock ();
return session;
}
uint64_t zmq::socket_base_t::register_session (session_t *session_)
{
sessions_sync.lock ();
uint64_t ordinal = next_ordinal;
next_ordinal++;
unnamed_sessions.insert (std::make_pair (ordinal, session_));
sessions_sync.unlock ();
return ordinal;
}
void zmq::socket_base_t::unregister_session (uint64_t ordinal_)
{
sessions_sync.lock ();
unnamed_sessions_t::iterator it = unnamed_sessions.find (ordinal_);
zmq_assert (it != unnamed_sessions.end ());
unnamed_sessions.erase (it);
sessions_sync.unlock ();
}
zmq::session_t *zmq::socket_base_t::find_session (uint64_t ordinal_)
{
sessions_sync.lock ();
unnamed_sessions_t::iterator it = unnamed_sessions.find (ordinal_);
if (it == unnamed_sessions.end ()) {
sessions_sync.unlock ();
return NULL;
}
session_t *session = it->second;
// Prepare the session for subsequent attach command.
session->inc_seqnum ();
sessions_sync.unlock ();
return session;
}
bool zmq::socket_base_t::dezombify ()
{
zmq_assert (zombie);
// Process any commands from other threads/sockets that may be available
// at the moment.
process_commands (false, false);
// If there are no more pipes attached and there are no more I/O objects
// owned by the socket, we can kill the zombie.
if (!pending_term_acks && !xhas_pipes ()) {
// If all objects have acknowledged their termination there should
// definitely be no I/O object remaining in the list.
zmq_assert (io_objects.empty ());
// Check whether there are no session leaks.
sessions_sync.lock ();
zmq_assert (named_sessions.empty ());
zmq_assert (unnamed_sessions.empty ());
sessions_sync.unlock ();
// Deallocate all the resources tied to this socket.
delete this;
// Notify the caller about the fact that the zombie is finally dead.
return true;
}
// The zombie remains undead.
return false;
}
void zmq::socket_base_t::process_commands (bool block_, bool throttle_)
{
bool received;
command_t cmd;
if (block_) {
received = signaler.recv (&cmd, true);
zmq_assert (received);
}
else {
#if defined ZMQ_DELAY_COMMANDS
// Optimised version of command processing - it doesn't have to check
// for incoming commands each time. It does so only if certain time
// elapsed since last command processing. Command delay varies
// depending on CPU speed: It's ~1ms on 3GHz CPU, ~2ms on 1.5GHz CPU
// etc. The optimisation makes sense only on platforms where getting
// a timestamp is a very cheap operation (tens of nanoseconds).
if (throttle_) {
// Get timestamp counter.
#if defined __GNUC__
uint32_t low;
uint32_t high;
__asm__ volatile ("rdtsc" : "=a" (low), "=d" (high));
uint64_t current_time = (uint64_t) high << 32 | low;
#elif defined _MSC_VER
uint64_t current_time = __rdtsc ();
#else
#error
#endif
// Check whether certain time have elapsed since last command
// processing.
if (current_time - last_processing_time <= max_command_delay)
return;
last_processing_time = current_time;
}
#endif
// Check whether there are any commands pending for this thread.
received = signaler.recv (&cmd, false);
}
// Process all the commands available at the moment.
while (received) {
cmd.destination->process_command (cmd);
received = signaler.recv (&cmd, false);
}
}
void zmq::socket_base_t::process_stop ()
{
// Here, someone have called zmq_term while the socket was still alive.
// We'll zombify it so that any blocking call is interrupted and any
// further attempt to use the socket will return ETERM. The user is still
// responsible for calling zmq_close on the socket though!
zombie = true;
}
void zmq::socket_base_t::process_own (owned_t *object_)
{
// If the socket is already being shut down, new owned objects are
// immediately asked to terminate.
if (zombie) {
send_term (object_);
pending_term_acks++;
return;
}
io_objects.insert (object_);
}
void zmq::socket_base_t::process_bind (reader_t *in_pipe_, writer_t *out_pipe_,
const blob_t &peer_identity_)
{
// If the socket is already being shut down, the termination process on
// the new pipes is started immediately. However, they are still attached
// as to let the process finish in a decent manner.
if (unlikely (zombie)) {
if (in_pipe_)
in_pipe_->terminate ();
if (out_pipe_)
out_pipe_->terminate ();
}
attach_pipes (in_pipe_, out_pipe_, peer_identity_);
}
void zmq::socket_base_t::process_term_req (owned_t *object_)
{
// When shutting down we can ignore termination requests from owned
// objects. It means the termination request was already sent to
// the object.
if (zombie)
return;
// If I/O object is well and alive ask it to terminate.
io_objects_t::iterator it = std::find (io_objects.begin (),
io_objects.end (), object_);
// If not found, we assume that termination request was already sent to
// the object so we can safely ignore the request.
if (it == io_objects.end ())
return;
pending_term_acks++;
io_objects.erase (it);
send_term (object_);
}
void zmq::socket_base_t::process_term_ack ()
{
zmq_assert (pending_term_acks);
pending_term_acks--;
}
void zmq::socket_base_t::process_seqnum ()
{
processed_seqnum++;
}
int zmq::socket_base_t::xsetsockopt (int option_, const void *optval_,
size_t optvallen_)
{
errno = EINVAL;
return -1;
}
bool zmq::socket_base_t::xhas_out ()
{
return false;
}
int zmq::socket_base_t::xsend (zmq_msg_t *msg_, int options_)
{
errno = ENOTSUP;
return -1;
}
bool zmq::socket_base_t::xhas_in ()
{
return false;
}
int zmq::socket_base_t::xrecv (zmq_msg_t *msg_, int options_)
{
errno = ENOTSUP;
return -1;
}