/* Copyright (c) 2007-2009 FastMQ Inc. This file is part of 0MQ. 0MQ is free software; you can redistribute it and/or modify it under the terms of the Lesser GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. 0MQ is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the Lesser GNU General Public License for more details. You should have received a copy of the Lesser GNU General Public License along with this program. If not, see . */ #include #include #include "../bindings/c/zmq.h" #include "socket_base.hpp" #include "app_thread.hpp" #include "dispatcher.hpp" #include "zmq_listener.hpp" #include "zmq_connecter.hpp" #include "io_thread.hpp" #include "session.hpp" #include "config.hpp" #include "owned.hpp" #include "uuid.hpp" #include "pipe.hpp" #include "err.hpp" #include "platform.hpp" #include "pgm_sender.hpp" #include "pgm_receiver.hpp" zmq::socket_base_t::socket_base_t (app_thread_t *parent_) : object_t (parent_), pending_term_acks (0), ticks (0), app_thread (parent_), shutting_down (false) { } zmq::socket_base_t::~socket_base_t () { } int zmq::socket_base_t::setsockopt (int option_, const void *optval_, size_t optvallen_) { // First, check whether specific socket type overloads the option. int rc = xsetsockopt (option_, optval_, optvallen_); if (rc == 0 || errno != EINVAL) return rc; // If the socket type doesn't support the option, pass it to // the generic option parser. return options.setsockopt (option_, optval_, optvallen_); } int zmq::socket_base_t::bind (const char *addr_) { // Parse addr_ string. std::string addr_type; std::string addr_args; std::string addr (addr_); std::string::size_type pos = addr.find ("://"); if (pos == std::string::npos) { errno = EINVAL; return -1; } addr_type = addr.substr (0, pos); addr_args = addr.substr (pos + 3); if (addr_type == "tcp") { zmq_listener_t *listener = new zmq_listener_t ( choose_io_thread (options.affinity), this, options); int rc = listener->set_address (addr_args.c_str ()); if (rc != 0) return -1; send_plug (listener); send_own (this, listener); return 0; } #if defined ZMQ_HAVE_OPENPGM if (addr_type == "pgm" || addr_type == "udp") { // In the case of PGM bind behaves the same like connect. return connect (addr_); } #endif // Unknown protocol. errno = EPROTONOSUPPORT; return -1; } int zmq::socket_base_t::connect (const char *addr_) { // Generate a unique name for the session. std::string session_name ("#"); session_name += uuid_t ().to_string (); // Parse addr_ string. std::string addr_type; std::string addr_args; std::string addr (addr_); std::string::size_type pos = addr.find ("://"); if (pos == std::string::npos) { errno = EINVAL; return -1; } addr_type = addr.substr (0, pos); addr_args = addr.substr (pos + 3); // Create the session. io_thread_t *io_thread = choose_io_thread (options.affinity); session_t *session = new session_t (io_thread, this, session_name.c_str (), options, true); zmq_assert (session); pipe_t *in_pipe = NULL; pipe_t *out_pipe = NULL; // Create inbound pipe, if required. if (options.requires_in) { in_pipe = new pipe_t (this, session, options.hwm, options.lwm); zmq_assert (in_pipe); } // Create outbound pipe, if required. if (options.requires_out) { out_pipe = new pipe_t (session, this, options.hwm, options.lwm); zmq_assert (out_pipe); } // Attach the pipes to the socket object. attach_pipes (in_pipe ? &in_pipe->reader : NULL, out_pipe ? &out_pipe->writer : NULL); // Attach the pipes to the session object. session->attach_pipes (out_pipe ? &out_pipe->reader : NULL, in_pipe ? &in_pipe->writer : NULL); // Activate the session. send_plug (session); send_own (this, session); if (addr_type == "tcp") { // Create the connecter object. Supply it with the session name // so that it can bind the new connection to the session once // it is established. zmq_connecter_t *connecter = new zmq_connecter_t ( choose_io_thread (options.affinity), this, options, session_name.c_str (), false); int rc = connecter->set_address (addr_args.c_str ()); if (rc != 0) { delete connecter; return -1; } send_plug (connecter); send_own (this, connecter); return 0; } #if defined ZMQ_HAVE_OPENPGM if (addr_type == "pgm" || addr_type == "udp") { // If the socket type requires bi-directional communication // multicast is not an option (it is uni-directional). if (options.requires_in && options.requires_out) { errno = ENOCOMPATPROTO; return -1; } // For udp, pgm transport with udp encapsulation is used. bool udp_encapsulation = false; if (addr_type == "udp") udp_encapsulation = true; if (options.requires_out) { // PGM sender. pgm_sender_t *pgm_sender = new pgm_sender_t (choose_io_thread (options.affinity), options, session_name.c_str ()); int rc = pgm_sender->init (udp_encapsulation, addr_args.c_str ()); if (rc != 0) { delete pgm_sender; return -1; } // Reserve a sequence number for following 'attach' command. session->inc_seqnum (); send_attach (session, pgm_sender); } else if (options.requires_in) { // PGM receiver. pgm_receiver_t *pgm_receiver = new pgm_receiver_t (choose_io_thread (options.affinity), options, session_name.c_str ()); int rc = pgm_receiver->init (udp_encapsulation, addr_args.c_str ()); if (rc != 0) { delete pgm_receiver; return -1; } // Reserve a sequence number for following 'attach' command. session->inc_seqnum (); send_attach (session, pgm_receiver); } else zmq_assert (false); return 0; } #endif // Unknown protoco. errno = EPROTONOSUPPORT; return -1; } int zmq::socket_base_t::send (::zmq_msg_t *msg_, int flags_) { // Process pending commands, if any. app_thread->process_commands (false, true); // Try to send the message. int rc = xsend (msg_, flags_); if (rc == 0) return 0; // In case of non-blocking send we'll simply propagate // the error - including EAGAIN - upwards. if (flags_ & ZMQ_NOBLOCK) return -1; // Oops, we couldn't send the message. Wait for the next // command, process it and try to send the message again. while (rc != 0) { if (errno != EAGAIN) return -1; app_thread->process_commands (true, false); rc = xsend (msg_, flags_); } return 0; } int zmq::socket_base_t::flush () { return xflush (); } int zmq::socket_base_t::recv (::zmq_msg_t *msg_, int flags_) { // Get the message and return immediately if successfull. int rc = xrecv (msg_, flags_); if (rc == 0) return 0; // If the message cannot be fetched immediately, there are two scenarios. // For non-blocking recv, commands are processed in case there's a revive // command already waiting int a command pipe. If it's not, return EAGAIN. // In blocking scenario, commands are processed over and over again until // we are able to fetch a message. if (flags_ & ZMQ_NOBLOCK) { if (errno != EAGAIN) return -1; app_thread->process_commands (false, false); ticks = 0; rc = xrecv (msg_, flags_); } else { while (rc != 0) { if (errno != EAGAIN) return -1; app_thread->process_commands (true, false); ticks = 0; rc = xrecv (msg_, flags_); } } // Once every inbound_poll_rate messages check for signals and process // incoming commands. This happens only if we are not polling altogether // because there are messages available all the time. If poll occurs, // ticks is set to zero and thus we avoid this code. // // Note that 'recv' uses different command throttling algorithm (the one // described above) from the one used by 'send'. This is because counting // ticks is more efficient than doing rdtsc all the time. if (++ticks == inbound_poll_rate) { app_thread->process_commands (false, false); ticks = 0; } return rc; } int zmq::socket_base_t::close () { app_thread->remove_socket (this); // Pointer to the dispatcher must be retrieved before the socket is // deallocated. Afterwards it is not available. dispatcher_t *dispatcher = get_dispatcher (); shutting_down = true; while (true) { // On third pass of the loop there should be no more I/O objects // because all connecters and listerners were destroyed during // the first pass and all engines delivered by delayed 'own' commands // are destroyed during the second pass. if (io_objects.empty () && !pending_term_acks) break; // Send termination request to all associated I/O objects. for (io_objects_t::iterator it = io_objects.begin (); it != io_objects.end (); it++) send_term (*it); // Move the objects to the list of pending term acks. pending_term_acks += io_objects.size (); io_objects.clear (); // Process commands till we get all the termination acknowledgements. while (pending_term_acks) app_thread->process_commands (true, false); } // Check whether there are no session leaks. sessions_sync.lock (); zmq_assert (sessions.empty ()); sessions_sync.unlock (); delete this; // This function must be called after the socket is completely deallocated // as it may cause termination of the whole 0MQ infrastructure. dispatcher->destroy_socket (); return 0; } bool zmq::socket_base_t::register_session (const char *name_, session_t *session_) { sessions_sync.lock (); bool registered = sessions.insert (std::make_pair (name_, session_)).second; sessions_sync.unlock (); return registered; } bool zmq::socket_base_t::unregister_session (const char *name_) { sessions_sync.lock (); sessions_t::iterator it = sessions.find (name_); bool unregistered = (it != sessions.end ()); sessions.erase (it); sessions_sync.unlock (); return unregistered; } zmq::session_t *zmq::socket_base_t::find_session (const char *name_) { sessions_sync.lock (); sessions_t::iterator it = sessions.find (name_); if (it == sessions.end ()) { sessions_sync.unlock (); return NULL; } // Prepare the session for subsequent attach command. it->second->inc_seqnum (); sessions_sync.unlock (); return it->second; } void zmq::socket_base_t::kill (reader_t *pipe_) { xkill (pipe_); } void zmq::socket_base_t::revive (reader_t *pipe_) { xrevive (pipe_); } void zmq::socket_base_t::attach_pipes (class reader_t *inpipe_, class writer_t *outpipe_) { if (inpipe_) inpipe_->set_endpoint (this); if (outpipe_) outpipe_->set_endpoint (this); xattach_pipes (inpipe_, outpipe_); } void zmq::socket_base_t::detach_inpipe (class reader_t *pipe_) { xdetach_inpipe (pipe_); pipe_->set_endpoint (NULL); // ? } void zmq::socket_base_t::detach_outpipe (class writer_t *pipe_) { xdetach_outpipe (pipe_); pipe_->set_endpoint (NULL); // ? } void zmq::socket_base_t::process_own (owned_t *object_) { io_objects.insert (object_); } void zmq::socket_base_t::process_bind (owned_t *session_, reader_t *in_pipe_, writer_t *out_pipe_) { attach_pipes (in_pipe_, out_pipe_); } void zmq::socket_base_t::process_term_req (owned_t *object_) { // When shutting down we can ignore termination requests from owned // objects. They are going to be terminated anyway. if (shutting_down) return; // If I/O object is well and alive ask it to terminate. io_objects_t::iterator it = std::find (io_objects.begin (), io_objects.end (), object_); // If not found, we assume that termination request was already sent to // the object so we can sagely ignore the request. if (it == io_objects.end ()) return; pending_term_acks++; io_objects.erase (it); send_term (object_); } void zmq::socket_base_t::process_term_ack () { zmq_assert (pending_term_acks); pending_term_acks--; }