/*
Copyright (c) 2007-2010 iMatix Corporation
This file is part of 0MQ.
0MQ is free software; you can redistribute it and/or modify it under
the terms of the Lesser GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
0MQ is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Lesser GNU General Public License for more details.
You should have received a copy of the Lesser GNU General Public License
along with this program. If not, see .
*/
#include "../include/zmq.h"
#include
#include
#include
#include
#include "forwarder.hpp"
#include "queue.hpp"
#include "streamer.hpp"
#include "socket_base.hpp"
#include "app_thread.hpp"
#include "msg_content.hpp"
#include "platform.hpp"
#include "stdint.hpp"
#include "config.hpp"
#include "ctx.hpp"
#include "err.hpp"
#include "fd.hpp"
#if defined ZMQ_HAVE_LINUX || defined ZMQ_HAVE_FREEBSD ||\
defined ZMQ_HAVE_OPENBSD || defined ZMQ_HAVE_SOLARIS ||\
defined ZMQ_HAVE_OSX || defined ZMQ_HAVE_QNXNTO ||\
defined ZMQ_HAVE_HPUX || defined ZMQ_HAVE_AIX ||\
defined ZMQ_HAVE_NETBSD
#include
#endif
#if !defined ZMQ_HAVE_WINDOWS
#include
#include
#endif
#if defined ZMQ_HAVE_OPENPGM
#include
#endif
void zmq_version (int *major_, int *minor_, int *patch_)
{
*major_ = PACKAGE_VERSION_MAJOR;
*minor_ = PACKAGE_VERSION_MINOR;
*patch_ = PACKAGE_VERSION_PATCH;
}
const char *zmq_strerror (int errnum_)
{
switch (errnum_) {
#if defined ZMQ_HAVE_WINDOWS
case ENOTSUP:
return "Not supported";
case EPROTONOSUPPORT:
return "Protocol not supported";
case ENOBUFS:
return "No buffer space available";
case ENETDOWN:
return "Network is down";
case EADDRINUSE:
return "Address in use";
case EADDRNOTAVAIL:
return "Address not available";
case ECONNREFUSED:
return "Connection refused";
case EINPROGRESS:
return "Operation in progress";
#endif
case EMTHREAD:
return "Number of preallocated application threads exceeded";
case EFSM:
return "Operation cannot be accomplished in current state";
case ENOCOMPATPROTO:
return "The protocol is not compatible with the socket type";
case ETERM:
return "Context was terminated";
default:
#if defined _MSC_VER
#pragma warning (push)
#pragma warning (disable:4996)
#endif
return strerror (errnum_);
#if defined _MSC_VER
#pragma warning (pop)
#endif
}
}
int zmq_msg_init (zmq_msg_t *msg_)
{
msg_->content = (zmq::msg_content_t*) ZMQ_VSM;
msg_->flags = 0;
msg_->vsm_size = 0;
return 0;
}
int zmq_msg_init_size (zmq_msg_t *msg_, size_t size_)
{
if (size_ <= ZMQ_MAX_VSM_SIZE) {
msg_->content = (zmq::msg_content_t*) ZMQ_VSM;
msg_->flags = 0;
msg_->vsm_size = (uint8_t) size_;
}
else {
msg_->content =
(zmq::msg_content_t*) malloc (sizeof (zmq::msg_content_t) + size_);
if (!msg_->content) {
errno = ENOMEM;
return -1;
}
msg_->flags = 0;
zmq::msg_content_t *content = (zmq::msg_content_t*) msg_->content;
content->data = (void*) (content + 1);
content->size = size_;
content->ffn = NULL;
content->hint = NULL;
new (&content->refcnt) zmq::atomic_counter_t ();
}
return 0;
}
int zmq_msg_init_data (zmq_msg_t *msg_, void *data_, size_t size_,
zmq_free_fn *ffn_, void *hint_)
{
msg_->content = (zmq::msg_content_t*) malloc (sizeof (zmq::msg_content_t));
zmq_assert (msg_->content);
msg_->flags = 0;
zmq::msg_content_t *content = (zmq::msg_content_t*) msg_->content;
content->data = data_;
content->size = size_;
content->ffn = ffn_;
content->hint = hint_;
new (&content->refcnt) zmq::atomic_counter_t ();
return 0;
}
int zmq_msg_close (zmq_msg_t *msg_)
{
// For VSMs and delimiters there are no resources to free.
if (msg_->content == (zmq::msg_content_t*) ZMQ_DELIMITER ||
msg_->content == (zmq::msg_content_t*) ZMQ_VSM)
return 0;
// If the content is not shared, or if it is shared and the reference.
// count has dropped to zero, deallocate it.
zmq::msg_content_t *content = (zmq::msg_content_t*) msg_->content;
if (!(msg_->flags & ZMQ_MSG_SHARED) || !content->refcnt.sub (1)) {
// We used "placement new" operator to initialize the reference.
// counter so we call its destructor now.
content->refcnt.~atomic_counter_t ();
if (content->ffn)
content->ffn (content->data, content->hint);
free (content);
}
return 0;
}
int zmq_msg_move (zmq_msg_t *dest_, zmq_msg_t *src_)
{
zmq_msg_close (dest_);
*dest_ = *src_;
zmq_msg_init (src_);
return 0;
}
int zmq_msg_copy (zmq_msg_t *dest_, zmq_msg_t *src_)
{
zmq_msg_close (dest_);
// VSMs and delimiters require no special handling.
if (src_->content != (zmq::msg_content_t*) ZMQ_DELIMITER &&
src_->content != (zmq::msg_content_t*) ZMQ_VSM) {
// One reference is added to shared messages. Non-shared messages
// are turned into shared messages and reference count is set to 2.
zmq::msg_content_t *content = (zmq::msg_content_t*) src_->content;
if (src_->flags & ZMQ_MSG_SHARED)
content->refcnt.add (1);
else {
src_->flags |= ZMQ_MSG_SHARED;
content->refcnt.set (2);
}
}
*dest_ = *src_;
return 0;
}
void *zmq_msg_data (zmq_msg_t *msg_)
{
if (msg_->content == (zmq::msg_content_t*) ZMQ_VSM)
return msg_->vsm_data;
if (msg_->content == (zmq::msg_content_t*) ZMQ_DELIMITER)
return NULL;
return ((zmq::msg_content_t*) msg_->content)->data;
}
size_t zmq_msg_size (zmq_msg_t *msg_)
{
if (msg_->content == (zmq::msg_content_t*) ZMQ_VSM)
return msg_->vsm_size;
if (msg_->content == (zmq::msg_content_t*) ZMQ_DELIMITER)
return 0;
return ((zmq::msg_content_t*) msg_->content)->size;
}
void *zmq_init (int io_threads_)
{
if (io_threads_ < 0) {
errno = EINVAL;
return NULL;
}
#if defined ZMQ_HAVE_OPENPGM
// Unfortunately, OpenPGM doesn't support refcounted init/shutdown, thus,
// let's fail if it was initialised beforehand.
zmq_assert (!pgm_supported ());
// Init PGM transport. Ensure threading and timer are enabled. Find PGM
// protocol ID. Note that if you want to use gettimeofday and sleep for
// openPGM timing, set environment variables PGM_TIMER to "GTOD" and
// PGM_SLEEP to "USLEEP".
GError *pgm_error = NULL;
int rc = pgm_init (&pgm_error);
if (rc != TRUE) {
if (pgm_error->domain == PGM_IF_ERROR && (
pgm_error->code == PGM_IF_ERROR_INVAL ||
pgm_error->code == PGM_IF_ERROR_XDEV ||
pgm_error->code == PGM_IF_ERROR_NODEV ||
pgm_error->code == PGM_IF_ERROR_NOTUNIQ ||
pgm_error->code == PGM_IF_ERROR_ADDRFAMILY ||
pgm_error->code == PGM_IF_ERROR_FAMILY ||
pgm_error->code == PGM_IF_ERROR_NODATA ||
pgm_error->code == PGM_IF_ERROR_NONAME ||
pgm_error->code == PGM_IF_ERROR_SERVICE)) {
g_error_free (pgm_error);
errno = EINVAL;
return NULL;
}
zmq_assert (false);
}
#endif
// Create 0MQ context.
zmq::ctx_t *ctx = new (std::nothrow) zmq::ctx_t ((uint32_t) io_threads_);
zmq_assert (ctx);
return (void*) ctx;
}
int zmq_term (void *ctx_)
{
int rc = ((zmq::ctx_t*) ctx_)->term ();
int en = errno;
#if defined ZMQ_HAVE_OPENPGM
// Shut down the OpenPGM library.
if (pgm_shutdown () != TRUE)
zmq_assert (false);
#endif
errno = en;
return rc;
}
void *zmq_socket (void *ctx_, int type_)
{
return (void*) (((zmq::ctx_t*) ctx_)->create_socket (type_));
}
int zmq_close (void *s_)
{
((zmq::socket_base_t*) s_)->close ();
return 0;
}
int zmq_setsockopt (void *s_, int option_, const void *optval_,
size_t optvallen_)
{
return (((zmq::socket_base_t*) s_)->setsockopt (option_, optval_,
optvallen_));
}
int zmq_getsockopt (void *s_, int option_, void *optval_, size_t *optvallen_)
{
return (((zmq::socket_base_t*) s_)->getsockopt (option_, optval_,
optvallen_));
}
int zmq_bind (void *s_, const char *addr_)
{
return (((zmq::socket_base_t*) s_)->bind (addr_));
}
int zmq_connect (void *s_, const char *addr_)
{
return (((zmq::socket_base_t*) s_)->connect (addr_));
}
int zmq_send (void *s_, zmq_msg_t *msg_, int flags_)
{
return (((zmq::socket_base_t*) s_)->send (msg_, flags_));
}
int zmq_recv (void *s_, zmq_msg_t *msg_, int flags_)
{
return (((zmq::socket_base_t*) s_)->recv (msg_, flags_));
}
int zmq_poll (zmq_pollitem_t *items_, int nitems_, long timeout_)
{
#if defined ZMQ_HAVE_LINUX || defined ZMQ_HAVE_FREEBSD ||\
defined ZMQ_HAVE_OPENBSD || defined ZMQ_HAVE_SOLARIS ||\
defined ZMQ_HAVE_OSX || defined ZMQ_HAVE_QNXNTO ||\
defined ZMQ_HAVE_HPUX || defined ZMQ_HAVE_AIX ||\
defined ZMQ_HAVE_NETBSD
pollfd *pollfds = (pollfd*) malloc (nitems_ * sizeof (pollfd));
zmq_assert (pollfds);
int npollfds = 0;
int nsockets = 0;
zmq::app_thread_t *app_thread = NULL;
for (int i = 0; i != nitems_; i++) {
// 0MQ sockets.
if (items_ [i].socket) {
// Get the app_thread the socket is living in. If there are two
// sockets in the same pollset with different app threads, fail.
zmq::socket_base_t *s = (zmq::socket_base_t*) items_ [i].socket;
if (app_thread) {
if (app_thread != s->get_thread ()) {
free (pollfds);
errno = EFAULT;
return -1;
}
}
else
app_thread = s->get_thread ();
nsockets++;
continue;
}
// Raw file descriptors.
pollfds [npollfds].fd = items_ [i].fd;
pollfds [npollfds].events =
(items_ [i].events & ZMQ_POLLIN ? POLLIN : 0) |
(items_ [i].events & ZMQ_POLLOUT ? POLLOUT : 0);
npollfds++;
}
// If there's at least one 0MQ socket in the pollset we have to poll
// for 0MQ commands. If ZMQ_POLL was not set, fail.
if (nsockets) {
pollfds [npollfds].fd = app_thread->get_signaler ()->get_fd ();
if (pollfds [npollfds].fd == zmq::retired_fd) {
free (pollfds);
errno = ENOTSUP;
return -1;
}
pollfds [npollfds].events = POLLIN;
npollfds++;
}
// First iteration just check for events, don't block. Waiting would
// prevent exiting on any events that may already been signaled on
// 0MQ sockets.
int rc = poll (pollfds, npollfds, 0);
if (rc == -1 && errno == EINTR && timeout_ >= 0) {
free (pollfds);
return 0;
}
errno_assert (rc >= 0 || (rc == -1 && errno == EINTR));
int timeout = timeout_ > 0 ? timeout_ / 1000 : -1;
int nevents = 0;
while (true) {
// Process 0MQ commands if needed.
if (nsockets && pollfds [npollfds -1].revents & POLLIN)
if (!app_thread->process_commands (false, false)) {
free (pollfds);
errno = ETERM;
return -1;
}
// Check for the events.
int pollfd_pos = 0;
for (int i = 0; i != nitems_; i++) {
// If the poll item is a raw file descriptor, simply convert
// the events to zmq_pollitem_t-style format.
if (!items_ [i].socket) {
items_ [i].revents = 0;
if (pollfds [pollfd_pos].revents & POLLIN)
items_ [i].revents |= ZMQ_POLLIN;
if (pollfds [pollfd_pos].revents & POLLOUT)
items_ [i].revents |= ZMQ_POLLOUT;
if (pollfds [pollfd_pos].revents & ~(POLLIN | POLLOUT))
items_ [i].revents |= ZMQ_POLLERR;
if (items_ [i].revents)
nevents++;
pollfd_pos++;
continue;
}
// The poll item is a 0MQ socket.
zmq::socket_base_t *s = (zmq::socket_base_t*) items_ [i].socket;
items_ [i].revents = 0;
if ((items_ [i].events & ZMQ_POLLOUT) && s->has_out ())
items_ [i].revents |= ZMQ_POLLOUT;
if ((items_ [i].events & ZMQ_POLLIN) && s->has_in ())
items_ [i].revents |= ZMQ_POLLIN;
if (items_ [i].revents)
nevents++;
}
// If there's at least one event, or if we are asked not to block,
// return immediately.
if (nevents || !timeout_)
break;
// Wait for events. Ignore interrupts if there's infinite timeout.
while (true) {
rc = poll (pollfds, npollfds, timeout);
if (rc == -1 && errno == EINTR) {
if (timeout_ < 0)
continue;
else {
rc = 0;
break;
}
}
errno_assert (rc >= 0);
break;
}
// If timeout was hit with no events signaled, return zero.
if (rc == 0)
break;
// If timeout was already applied, we don't want to poll anymore.
// Setting timeout to zero will cause termination of the function
// once the events we've got are processed.
if (timeout > 0)
timeout = 0;
}
free (pollfds);
return nevents;
#elif defined ZMQ_HAVE_WINDOWS || defined ZMQ_HAVE_OPENVMS
fd_set pollset_in;
FD_ZERO (&pollset_in);
fd_set pollset_out;
FD_ZERO (&pollset_out);
fd_set pollset_err;
FD_ZERO (&pollset_err);
zmq::app_thread_t *app_thread = NULL;
int nsockets = 0;
zmq::fd_t maxfd = zmq::retired_fd;
zmq::fd_t notify_fd = zmq::retired_fd;
for (int i = 0; i != nitems_; i++) {
// 0MQ sockets.
if (items_ [i].socket) {
// Get the app_thread the socket is living in. If there are two
// sockets in the same pollset with different app threads, fail.
zmq::socket_base_t *s = (zmq::socket_base_t*) items_ [i].socket;
if (app_thread) {
if (app_thread != s->get_thread ()) {
errno = EFAULT;
return -1;
}
}
else
app_thread = s->get_thread ();
nsockets++;
continue;
}
// Raw file descriptors.
if (items_ [i].events & ZMQ_POLLIN)
FD_SET (items_ [i].fd, &pollset_in);
if (items_ [i].events & ZMQ_POLLOUT)
FD_SET (items_ [i].fd, &pollset_out);
if (items_ [i].events & ZMQ_POLLERR)
FD_SET (items_ [i].fd, &pollset_err);
if (maxfd == zmq::retired_fd || maxfd < items_ [i].fd)
maxfd = items_ [i].fd;
}
// If there's at least one 0MQ socket in the pollset we have to poll
// for 0MQ commands. If ZMQ_POLL was not set, fail.
if (nsockets) {
notify_fd = app_thread->get_signaler ()->get_fd ();
if (notify_fd == zmq::retired_fd) {
errno = ENOTSUP;
return -1;
}
FD_SET (notify_fd, &pollset_in);
if (maxfd == zmq::retired_fd || maxfd < notify_fd)
maxfd = notify_fd;
}
bool block = (timeout_ < 0);
timeval timeout = {timeout_ / 1000000, timeout_ % 1000000};
timeval zero_timeout = {0, 0};
int nevents = 0;
// First iteration just check for events, don't block. Waiting would
// prevent exiting on any events that may already been signaled on
// 0MQ sockets.
fd_set inset, outset, errset;
memcpy (&inset, &pollset_in, sizeof (fd_set));
memcpy (&outset, &pollset_out, sizeof (fd_set));
memcpy (&errset, &pollset_err, sizeof (fd_set));
int rc = select (maxfd, &inset, &outset, &errset, &zero_timeout);
#if defined ZMQ_HAVE_WINDOWS
wsa_assert (rc != SOCKET_ERROR);
#else
if (rc == -1 && errno == EINTR && timeout_ >= 0)
return 0;
errno_assert (rc >= 0 || (rc == -1 && errno == EINTR));
#endif
while (true) {
// Process 0MQ commands if needed.
if (nsockets && FD_ISSET (notify_fd, &inset))
if (!app_thread->process_commands (false, false)) {
errno = ETERM;
return -1;
}
// Check for the events.
for (int i = 0; i != nitems_; i++) {
// If the poll item is a raw file descriptor, simply convert
// the events to zmq_pollitem_t-style format.
if (!items_ [i].socket) {
items_ [i].revents = 0;
if (FD_ISSET (items_ [i].fd, &inset))
items_ [i].revents |= ZMQ_POLLIN;
if (FD_ISSET (items_ [i].fd, &outset))
items_ [i].revents |= ZMQ_POLLOUT;
if (FD_ISSET (items_ [i].fd, &errset))
items_ [i].revents |= ZMQ_POLLERR;
if (items_ [i].revents)
nevents++;
continue;
}
// The poll item is a 0MQ socket.
zmq::socket_base_t *s = (zmq::socket_base_t*) items_ [i].socket;
items_ [i].revents = 0;
if ((items_ [i].events & ZMQ_POLLOUT) && s->has_out ())
items_ [i].revents |= ZMQ_POLLOUT;
if ((items_ [i].events & ZMQ_POLLIN) && s->has_in ())
items_ [i].revents |= ZMQ_POLLIN;
if (items_ [i].revents)
nevents++;
}
// If there's at least one event, or if we are asked not to block,
// return immediately.
if (nevents || (timeout.tv_sec == 0 && timeout.tv_usec == 0))
break;
// Wait for events. Ignore interrupts if there's infinite timeout.
while (true) {
memcpy (&inset, &pollset_in, sizeof (fd_set));
memcpy (&outset, &pollset_out, sizeof (fd_set));
memcpy (&errset, &pollset_err, sizeof (fd_set));
rc = select (maxfd, &inset, &outset, &errset,
block ? NULL : &timeout);
#if defined ZMQ_HAVE_WINDOWS
wsa_assert (rc != SOCKET_ERROR);
#else
if (rc == -1 && errno == EINTR) {
if (timeout_ < 0)
continue;
else {
rc = 0;
break;
}
}
errno_assert (rc >= 0);
#endif
break;
}
// If timeout was hit with no events signaled, return zero.
if (rc == 0)
break;
// If timeout was already applied, we don't want to poll anymore.
// Setting timeout to zero will cause termination of the function
// once the events we've got are processed.
if (!block)
timeout = zero_timeout;
}
return nevents;
#else
errno = ENOTSUP;
return -1;
#endif
}
int zmq_errno ()
{
return errno;
}
int zmq_device (int device_, void *insocket_, void *outsocket_)
{
switch (device_) {
case ZMQ_FORWARDER:
return zmq::forwarder ((zmq::socket_base_t*) insocket_,
(zmq::socket_base_t*) outsocket_);
case ZMQ_QUEUE:
return zmq::queue ((zmq::socket_base_t*) insocket_,
(zmq::socket_base_t*) outsocket_);
case ZMQ_STREAMER:
return zmq::streamer ((zmq::socket_base_t*) insocket_,
(zmq::socket_base_t*) outsocket_);
default:
return EINVAL;
}
}
////////////////////////////////////////////////////////////////////////////////
// 0MQ utils - to be used by perf tests
////////////////////////////////////////////////////////////////////////////////
#if defined ZMQ_HAVE_WINDOWS
static uint64_t now ()
{
// Get the high resolution counter's accuracy.
LARGE_INTEGER ticksPerSecond;
QueryPerformanceFrequency (&ticksPerSecond);
// What time is it?
LARGE_INTEGER tick;
QueryPerformanceCounter (&tick);
// Convert the tick number into the number of seconds
// since the system was started.
double ticks_div = (double) (ticksPerSecond.QuadPart / 1000000);
return (uint64_t) (tick.QuadPart / ticks_div);
}
void zmq_sleep (int seconds_)
{
Sleep (seconds_ * 1000);
}
#else
static uint64_t now ()
{
struct timeval tv;
int rc;
rc = gettimeofday (&tv, NULL);
assert (rc == 0);
return (tv.tv_sec * (uint64_t) 1000000 + tv.tv_usec);
}
void zmq_sleep (int seconds_)
{
sleep (seconds_);
}
#endif
void *zmq_stopwatch_start ()
{
uint64_t *watch = (uint64_t*) malloc (sizeof (uint64_t));
assert (watch);
*watch = now ();
return (void*) watch;
}
unsigned long zmq_stopwatch_stop (void *watch_)
{
uint64_t end = now ();
uint64_t start = *(uint64_t*) watch_;
free (watch_);
return (unsigned long) (end - start);
}