1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
|
/*
Copyright (c) 2007-2010 iMatix Corporation
This file is part of 0MQ.
0MQ is free software; you can redistribute it and/or modify it under
the terms of the Lesser GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
0MQ is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Lesser GNU General Public License for more details.
You should have received a copy of the Lesser GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <new>
#include <string.h>
#include "ctx.hpp"
#include "socket_base.hpp"
#include "io_thread.hpp"
#include "platform.hpp"
#include "err.hpp"
#include "pipe.hpp"
#if defined ZMQ_HAVE_WINDOWS
#include "windows.h"
#else
#include "unistd.h"
#endif
zmq::ctx_t::ctx_t (uint32_t io_threads_) :
no_sockets_notify (false)
{
int rc;
#ifdef ZMQ_HAVE_WINDOWS
// Intialise Windows sockets. Note that WSAStartup can be called multiple
// times given that WSACleanup will be called for each WSAStartup.
WORD version_requested = MAKEWORD (2, 2);
WSADATA wsa_data;
rc = WSAStartup (version_requested, &wsa_data);
zmq_assert (rc == 0);
zmq_assert (LOBYTE (wsa_data.wVersion) == 2 &&
HIBYTE (wsa_data.wVersion) == 2);
#endif
// Initialise the array of signalers.
slot_count = max_sockets + io_threads_;
slots = (signaler_t**) malloc (sizeof (signaler_t*) * slot_count);
zmq_assert (slots);
// Create I/O thread objects and launch them.
for (uint32_t i = 0; i != io_threads_; i++) {
io_thread_t *io_thread = new (std::nothrow) io_thread_t (this, i);
zmq_assert (io_thread);
io_threads.push_back (io_thread);
slots [i] = io_thread->get_signaler ();
io_thread->start ();
}
// In the unused part of the slot array, create a list of empty slots.
for (int32_t i = (int32_t) slot_count - 1;
i >= (int32_t) io_threads_; i--) {
empty_slots.push_back (i);
slots [i] = NULL;
}
// Create the logging infrastructure.
log_socket = create_socket (ZMQ_PUB);
zmq_assert (log_socket);
rc = log_socket->bind ("sys://log");
zmq_assert (rc == 0);
}
zmq::ctx_t::~ctx_t ()
{
// Check that there are no remaining open or zombie sockets.
zmq_assert (sockets.empty ());
zmq_assert (zombies.empty ());
// Ask I/O threads to terminate. If stop signal wasn't sent to I/O
// thread subsequent invocation of destructor would hang-up.
for (io_threads_t::size_type i = 0; i != io_threads.size (); i++)
io_threads [i]->stop ();
// Wait till I/O threads actually terminate.
for (io_threads_t::size_type i = 0; i != io_threads.size (); i++)
delete io_threads [i];
// Deallocate the array of slot. No special work is
// needed as signalers themselves were deallocated with their
// corresponding io_thread/socket objects.
free (slots);
#ifdef ZMQ_HAVE_WINDOWS
// On Windows, uninitialise socket layer.
int rc = WSACleanup ();
wsa_assert (rc != SOCKET_ERROR);
#endif
}
int zmq::ctx_t::terminate ()
{
// Close the logging infrastructure.
log_sync.lock ();
int rc = log_socket->close ();
zmq_assert (rc == 0);
log_socket = NULL;
log_sync.unlock ();
// First send stop command to sockets so that any
// blocking calls are interrupted.
slot_sync.lock ();
for (sockets_t::size_type i = 0; i != sockets.size (); i++)
sockets [i]->stop ();
if (!sockets.empty ())
no_sockets_notify = true;
slot_sync.unlock ();
// Find out whether there are any open sockets to care about.
// If there are open sockets, sleep till they are closed. Note that we can
// use no_sockets_notify safely out of the critical section as once set
// its value is never changed again.
if (no_sockets_notify)
no_sockets_sync.wait ();
// Note that the lock won't block anyone here. There's noone else having
// open sockets anyway. The only purpose of the lock is to double-check all
// the CPU caches have been synchronised.
slot_sync.lock ();
// At this point there should be no active sockets. What we have is a set
// of zombies waiting to be dezombified.
zmq_assert (sockets.empty ());
// Get rid of remaining zombie sockets.
while (!zombies.empty ()) {
dezombify ();
// Sleep for 1ms not to end up busy-looping in the case the I/O threads
// are still busy sending data. We can possibly add a grand poll here
// (polling for fds associated with all the zombie sockets), but it's
// probably not worth of implementing it.
#if defined ZMQ_HAVE_WINDOWS
Sleep (1);
#else
usleep (1000);
#endif
}
slot_sync.unlock ();
// Deallocate the resources.
delete this;
return 0;
}
zmq::socket_base_t *zmq::ctx_t::create_socket (int type_)
{
slot_sync.lock ();
// Free the slots, if possible.
dezombify ();
// If max_sockets limit was reached, return error.
if (empty_slots.empty ()) {
slot_sync.unlock ();
errno = EMFILE;
return NULL;
}
// Choose a slot for the socket.
uint32_t slot = empty_slots.back ();
empty_slots.pop_back ();
// Create the socket and register its signaler.
socket_base_t *s = socket_base_t::create (type_, this, slot);
if (!s) {
empty_slots.push_back (slot);
slot_sync.unlock ();
return NULL;
}
sockets.push_back (s);
slots [slot] = s->get_signaler ();
slot_sync.unlock ();
return s;
}
void zmq::ctx_t::zombify_socket (socket_base_t *socket_)
{
// Zombification of socket basically means that its ownership is tranferred
// from the application that created it to the context.
// Note that the lock provides the memory barrier needed to migrate
// zombie-to-be socket from it's native thread to shared data area
// synchronised by slot_sync.
slot_sync.lock ();
sockets.erase (socket_);
zombies.push_back (socket_);
// Try to get rid of at least some zombie sockets at this point.
dezombify ();
// If shutdown thread is interested in notification about no more
// open sockets, notify it now.
if (sockets.empty () && no_sockets_notify)
no_sockets_sync.post ();
slot_sync.unlock ();
}
void zmq::ctx_t::send_command (uint32_t slot_, const command_t &command_)
{
slots [slot_]->send (command_);
}
zmq::io_thread_t *zmq::ctx_t::choose_io_thread (uint64_t affinity_)
{
if (io_threads.empty ())
return NULL;
// Find the I/O thread with minimum load.
int min_load = -1;
io_threads_t::size_type result = 0;
for (io_threads_t::size_type i = 0; i != io_threads.size (); i++) {
if (!affinity_ || (affinity_ & (uint64_t (1) << i))) {
int load = io_threads [i]->get_load ();
if (min_load == -1 || load < min_load) {
min_load = load;
result = i;
}
}
}
zmq_assert (min_load != -1);
return io_threads [result];
}
int zmq::ctx_t::register_endpoint (const char *addr_,
socket_base_t *socket_)
{
endpoints_sync.lock ();
bool inserted = endpoints.insert (std::make_pair (std::string (addr_),
socket_)).second;
if (!inserted) {
errno = EADDRINUSE;
endpoints_sync.unlock ();
return -1;
}
endpoints_sync.unlock ();
return 0;
}
void zmq::ctx_t::unregister_endpoints (socket_base_t *socket_)
{
endpoints_sync.lock ();
endpoints_t::iterator it = endpoints.begin ();
while (it != endpoints.end ()) {
if (it->second == socket_) {
endpoints_t::iterator to_erase = it;
it++;
endpoints.erase (to_erase);
continue;
}
it++;
}
endpoints_sync.unlock ();
}
zmq::socket_base_t *zmq::ctx_t::find_endpoint (const char *addr_)
{
endpoints_sync.lock ();
endpoints_t::iterator it = endpoints.find (addr_);
if (it == endpoints.end ()) {
endpoints_sync.unlock ();
errno = ECONNREFUSED;
return NULL;
}
socket_base_t *endpoint = it->second;
// Increment the command sequence number of the peer so that it won't
// get deallocated until "bind" command is issued by the caller.
// The subsequent 'bind' has to be called with inc_seqnum parameter
// set to false, so that the seqnum isn't incremented twice.
endpoint->inc_seqnum ();
endpoints_sync.unlock ();
return endpoint;
}
void zmq::ctx_t::log (zmq_msg_t *msg_)
{
// At this point we migrate the log socket to the current thread.
// We rely on mutex for executing the memory barrier.
log_sync.lock ();
if (log_socket)
log_socket->send (msg_, 0);
log_sync.unlock ();
}
void zmq::ctx_t::dezombify ()
{
// Try to dezombify each zombie in the list. Note that caller is
// responsible for calling this method in the slot_sync critical section.
for (zombies_t::iterator it = zombies.begin (); it != zombies.end ();) {
uint32_t slot = (*it)->get_slot ();
if ((*it)->dezombify ()) {
zombies.erase (it);
empty_slots.push_back (slot);
slots [slot] = NULL;
}
else
it++;
}
}
|