summaryrefslogtreecommitdiff
path: root/src/pgm_socket.cpp
blob: 8ceff6c727b0acce84301eaa4652c498e3d5f6b2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
/*
    Copyright (c) 2007-2009 FastMQ Inc.

    This file is part of 0MQ.

    0MQ is free software; you can redistribute it and/or modify it under
    the terms of the Lesser GNU General Public License as published by
    the Free Software Foundation; either version 3 of the License, or
    (at your option) any later version.

    0MQ is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    Lesser GNU General Public License for more details.

    You should have received a copy of the Lesser GNU General Public License
    along with this program.  If not, see <http://www.gnu.org/licenses/>.
*/

#include "platform.hpp"

#if defined ZMQ_HAVE_OPENPGM

#ifdef ZMQ_HAVE_LINUX
#include <pgm/pgm.h>
#else 
#include <Winsock2.h>
#include <Wsrm.h>
#include <ws2spi.h>
#endif

#include <string>
#include <iostream>

#include "options.hpp"
#include "pgm_socket.hpp"
#include "config.hpp"
#include "err.hpp"

//#define PGM_SOCKET_DEBUG
//#define PGM_SOCKET_DEBUG_LEVEL 1

// level 1 = key behaviour
// level 2 = processing flow
// level 4 = infos

#ifndef PGM_SOCKET_DEBUG
#   define zmq_log(n, ...)  while (0)
#else
#   define zmq_log(n, ...)    do { if ((n) <= PGM_SOCKET_DEBUG_LEVEL) \
        { printf (__VA_ARGS__);}} while (0)
#endif

#ifdef ZMQ_HAVE_LINUX

zmq::pgm_socket_t::pgm_socket_t (bool receiver_, const options_t &options_) :
    g_transport (NULL),
    options (options_),
    receiver (receiver_),
    port_number (0),
    udp_encapsulation (false),
    pgm_msgv (NULL),
    nbytes_rec (0),
    nbytes_processed (0),
    pgm_msgv_processed (0),
    pgm_msgv_len (0)
{
    
}

int zmq::pgm_socket_t::init (bool udp_encapsulation_, const char *network_)
{
    udp_encapsulation = udp_encapsulation_;
 
    //  Parse port number.
    const char *port_delim = strchr (network_, ':');
    if (!port_delim) {
        errno = EINVAL;
        return -1;
    }

    port_number = atoi (port_delim + 1);
  
    if (port_delim - network_ >= (int) sizeof (network) - 1) {
        errno = EINVAL;
        return -1;
    }

    memset (network, '\0', sizeof (network));
    memcpy (network, network_, port_delim - network_);

    zmq_log (1, "parsed: network  %s, port %i, udp encaps. %s, %s(%i)\n", 
        network, port_number, udp_encapsulation ? "yes" : "no",
        __FILE__, __LINE__);

    //  Open PGM transport.
    int rc = open_transport ();
    if (rc != 0)
        return -1;

    //  For receiver transport preallocate pgm_msgv array.
    //  in_batch_size configured in confing.hpp
    if (receiver) {
        pgm_msgv_len = get_max_apdu_at_once (in_batch_size);
        pgm_msgv = new pgm_msgv_t [pgm_msgv_len];
    }

    return 0;
}

int zmq::pgm_socket_t::open_transport (void)
{

    zmq_log (1, "Opening PGM: network  %s, port %i, udp encaps. %s, %s(%i)\n",
        network, port_number, udp_encapsulation ? "yes" : "no", 
        __FILE__, __LINE__);

    //  Can not open transport before destroying old one. 
    zmq_assert (g_transport == NULL);

    //  Set actual_tsi and prev_tsi to zeros.
    memset (&tsi, '\0', sizeof (pgm_tsi_t));
    memset (&retired_tsi, '\0', sizeof (pgm_tsi_t));

    //  Zero counter used in msgrecv.
    nbytes_rec = 0;
    nbytes_processed = 0;
    pgm_msgv_processed = 0;

    //  Init PGM transport.
    //  Ensure threading enabled, ensure timer enabled and find PGM protocol id.
    //
    //  Note that if you want to use gettimeofday and sleep for openPGM timing,
    //  set environment variables PGM_TIMER to "GTOD" 
    //  and PGM_SLEEP to "USLEEP".
    int rc = pgm_init ();
    if (rc != 0) {
        errno = EINVAL;
        return -1;
    }

    //  PGM transport GSI.
    pgm_gsi_t gsi;
 
    //  PGM transport GSRs.
    struct group_source_req recv_gsr, send_gsr;
    size_t recv_gsr_len = 1;

    rc = pgm_create_md5_gsi (&gsi);
    if (rc != 0) {
        errno = EINVAL;
        return -1;
    }

    //  On success, 0 is returned. On invalid arguments, -EINVAL is returned. 
    //  If more multicast groups are found than the recv_len parameter, 
    //  -ENOMEM is returned.
    rc = pgm_if_parse_transport (network, AF_INET, &recv_gsr, 
        &recv_gsr_len, &send_gsr);
    if (rc != 0) {
        errno = EINVAL;
        return -1;
    }

    if (recv_gsr_len != 1) {
        errno = ENOMEM;
        return -1;
    }

    //  If we are using UDP encapsulation update send_gsr & recv_gsr 
    //  structures. Note that send_gsr & recv_gsr has to be updated after 
    //  pgm_if_parse_transport call.
    if (udp_encapsulation) {

        //  Use the same port for UDP encapsulation.
        ((struct sockaddr_in*)&send_gsr.gsr_group)->sin_port = 
            g_htons (port_number);
	((struct sockaddr_in*)&recv_gsr.gsr_group)->sin_port = 
            g_htons (port_number);
    }

    rc = pgm_transport_create (&g_transport, &gsi, 0, port_number, &recv_gsr, 
        1, &send_gsr);
    if (rc != 0) {
        return -1;
    }

    //  Common parameters for receiver and sender.

    //  Set maximum transport protocol data unit size (TPDU).
    rc = pgm_transport_set_max_tpdu (g_transport, pgm_max_tpdu);
    if (rc != 0) {
        errno = EINVAL;
        return -1;
    }

    //  Set maximum number of network hops to cross.
    rc = pgm_transport_set_hops (g_transport, 16);
    if (rc != 0) {
        errno = EINVAL;
        return -1;
    }

    //  Receiver transport.
    if (receiver) {

        //  Set transport->may_close_on_failure to true,
        //  after data los recvmsgv returns -1 errno set to ECONNRESET.
        rc = pgm_transport_set_close_on_failure (g_transport, TRUE);
        if (rc != 0) {
            errno = EINVAL;
            return -1;
        }

        //  Set transport->can_send_data = FALSE.
        //  Note that NAKs are still generated by the transport.
        rc = pgm_transport_set_recv_only (g_transport, false);
        if (rc != 0) {
            errno = EINVAL;
            return -1;
        }

        //  Set NAK transmit back-off interval [us].
        rc = pgm_transport_set_nak_bo_ivl (g_transport, 50*1000);
        if (rc != 0) {
            errno = EINVAL;
            return -1;
        }

        //  Set timeout before repeating NAK [us].
        rc = pgm_transport_set_nak_rpt_ivl (g_transport, 200*1000);
        if (rc != 0) {
            errno = EINVAL;
            return -1;
        }

        //  Set timeout for receiving RDATA.
        rc = pgm_transport_set_nak_rdata_ivl (g_transport, 200*1000);
        if (rc != 0) {
            errno = EINVAL;
            return -1;
        }

        //  Set retries for NAK without NCF/DATA (NAK_DATA_RETRIES).
        rc = pgm_transport_set_nak_data_retries (g_transport, 5);
        if (rc != 0) {
            errno = EINVAL;
            return -1;
        }

        //  Set retries for NCF after NAK (NAK_NCF_RETRIES).
        rc = pgm_transport_set_nak_ncf_retries (g_transport, 2);
        if (rc != 0) {
            errno = EINVAL;
            return -1;
        }

        //  Set timeout for removing a dead peer [us].
        rc = pgm_transport_set_peer_expiry (g_transport, 5*8192*1000);
        if (rc != 0) {
            errno = EINVAL;
            return -1;
        }

        //  Set expiration time of SPM Requests [us].
        rc = pgm_transport_set_spmr_expiry (g_transport, 25*1000);
        if (rc != 0) {
            errno = EINVAL;
            return -1;
        }

        //  Set the size of the receive window.
        //
        //  data rate [B/s]  (options.rate is kb/s).
        if (options.rate <= 0) {
            errno = EINVAL;
            return -1;
        }

        rc = pgm_transport_set_rxw_max_rte (g_transport, 
            options.rate * 1000 / 8);
        if (rc != 0) {
            errno = EINVAL;
            return -1;
        }

        //  Recovery interval [s]. 
        if (options.recovery_ivl <= 0) {
            errno = EINVAL;
            return -1;
        }

        rc = pgm_transport_set_rxw_secs (g_transport, options.recovery_ivl);
        if (rc != 0) {
            errno = EINVAL;
            return -1;
        }

    //  Sender transport.
    } else {

        //  Set transport->can_recv = FALSE, waiting_pipe wont not be read.
        rc = pgm_transport_set_send_only (g_transport, TRUE);
        if (rc != 0) {
            errno = EINVAL;
            return -1;
        }

        //  Set the size of the send window.
        //
        //  data rate [B/s]  (options.rate is kb/s).
        if (options.rate <= 0) {
            errno = EINVAL;
            return -1;
        }

        rc = pgm_transport_set_txw_max_rte (g_transport, 
            options.rate * 1000 / 8);
        if (rc != 0) {
            errno = EINVAL;
            return -1;
        }

        //  Recovery interval [s]. 
        if (options.recovery_ivl <= 0) {
            errno = EINVAL;
            return -1;
        }

        rc = pgm_transport_set_txw_secs (g_transport, options.recovery_ivl);
        if (rc != 0) {
            errno = EINVAL;
            return -1;
        }

        //  Preallocate full transmit window. For simplification always 
        //  worst case is used (40 bytes ipv6 header and 20 bytes UDP 
        //  encapsulation).
        int to_preallocate = options.recovery_ivl * (options.rate * 1000 / 8) 
            / (pgm_max_tpdu - 40 - 20);

        rc = pgm_transport_set_txw_preallocate (g_transport, to_preallocate);
        if (rc != 0) {
            errno = EINVAL;
            return -1;
        }

        zmq_log (2, "Preallocated %i slices in TX window. %s(%i)\n", 
            to_preallocate, __FILE__, __LINE__);

        //  Set interval of background SPM packets [us].
        rc = pgm_transport_set_ambient_spm (g_transport, 8192 * 1000);
        if (rc != 0) {
            errno = EINVAL;
            return -1;
        }

        //  Set intervals of data flushing SPM packets [us].
        guint spm_heartbeat[] = {4 * 1000, 4 * 1000, 8 * 1000, 16 * 1000, 
            32 * 1000, 64 * 1000, 128 * 1000, 256 * 1000, 512 * 1000, 
            1024 * 1000, 2048 * 1000, 4096 * 1000, 8192 * 1000};
        
	rc = pgm_transport_set_heartbeat_spm (g_transport, spm_heartbeat, 
            G_N_ELEMENTS(spm_heartbeat));
        if (rc != 0) {
            errno = EINVAL;
            return -1;
        }
    }
    
    //  Enable multicast loopback.
    if (options.use_multicast_loop) {
        rc = pgm_transport_set_multicast_loop (g_transport, true);
        if (rc != 0) {
            errno = EINVAL;
            return -1;
        }
    }

    //  Bind a transport to the specified network devices.
    rc = pgm_transport_bind (g_transport);
    if (rc != 0) {
        return -1;
    }

    return 0;
}

zmq::pgm_socket_t::~pgm_socket_t ()
{
    //  Celanup.
    if (pgm_msgv) {
        delete [] pgm_msgv;
    }

    if (g_transport)
        close_transport ();
}

void zmq::pgm_socket_t::close_transport (void)
{   
    //  g_transport has to be valid.
    zmq_assert (g_transport);

    pgm_transport_destroy (g_transport, TRUE);

    g_transport = NULL;
}

//   Get receiver fds. recv_fd is from transport->recv_sock
//   waiting_pipe_fd is from transport->waiting_pipe [0]
int zmq::pgm_socket_t::get_receiver_fds (int *recv_fd_, 
    int *waiting_pipe_fd_)
{

    //  For POLLIN there are 2 pollfds in pgm_transport.
    int fds_array_size = pgm_receiver_fd_count;
    pollfd *fds = new pollfd [fds_array_size];
    memset (fds, '\0', fds_array_size * sizeof (fds));

    //  Retrieve pollfds from pgm_transport.
    int rc = pgm_transport_poll_info (g_transport, fds, &fds_array_size, 
        POLLIN);

    //  pgm_transport_poll_info has to return 2 pollfds for POLLIN. 
    //  Note that fds_array_size parameter can be 
    //  changed inside pgm_transport_poll_info call.
    zmq_assert (rc == pgm_receiver_fd_count);
 
    //  Store pfds into user allocated space.
    *recv_fd_ = fds [0].fd;
    *waiting_pipe_fd_ = fds [1].fd;

    delete [] fds;

    return pgm_receiver_fd_count;
}

//   Get fds and store them into user allocated memory. 
//   sender_fd is from pgm_transport->send_sock.
//   receive_fd_ is from  transport->recv_sock.
int zmq::pgm_socket_t::get_sender_fds (int *send_fd_, int *receive_fd_)
{

    //  Preallocate pollfds array.
    int fds_array_size = pgm_sender_fd_count;
    pollfd *fds = new pollfd [fds_array_size];
    memset (fds, '\0', fds_array_size * sizeof (fds));

    //  Retrieve pollfds from pgm_transport
    int rc = pgm_transport_poll_info (g_transport, fds, &fds_array_size, 
        POLLOUT | POLLIN);

    //  pgm_transport_poll_info has to return one pollfds for POLLOUT and
    //  second for POLLIN.
    //  Note that fds_array_size parameter can be 
    //  changed inside pgm_transport_poll_info call.
    zmq_assert (rc == pgm_sender_fd_count);
 
    //  Store pfds into user allocated space.
    *receive_fd_ = fds [0].fd;
    *send_fd_ = fds [1].fd;

    delete [] fds;

    return pgm_sender_fd_count;
}

//  Send one APDU, transmit window owned memory.
size_t zmq::pgm_socket_t::send (unsigned char *data_, size_t data_len_)
{

    iovec iov = {data_,data_len_};

    ssize_t nbytes = pgm_transport_send_packetv (g_transport, &iov, 1, 
        MSG_DONTWAIT | MSG_WAITALL, true);

    zmq_assert (nbytes != -EINVAL);

    if (nbytes == -1 && errno != EAGAIN) {
        errno_assert (false);
    }

    //  If nbytes is -1 and errno is EAGAIN means that we can not send data 
    //  now. We have to call write_one_pkt again.
    nbytes = nbytes == -1 ? 0 : nbytes;

    zmq_log (4, "wrote %iB, %s(%i)\n", (int)nbytes, __FILE__, __LINE__);
    
    // We have to write all data as one packet.
    if (nbytes > 0) {
        zmq_assert (nbytes == (ssize_t)data_len_);
    }

    return nbytes;
}

//  Return max TSDU size without fragmentation from current PGM transport.
size_t zmq::pgm_socket_t::get_max_tsdu_size (void)
{
    return (size_t)pgm_transport_max_tsdu (g_transport, false);
}

//  Returns how many APDUs are needed to fill reading buffer.
size_t zmq::pgm_socket_t::get_max_apdu_at_once (size_t readbuf_size_)
{
    zmq_assert (readbuf_size_ > 0);

    //  Read max TSDU size without fragmentation.
    size_t max_tsdu_size = get_max_tsdu_size ();

    //  Calculate number of APDUs needed to fill the reading buffer.
    size_t apdu_count = (int)readbuf_size_ / max_tsdu_size;

    if ((int) readbuf_size_ % max_tsdu_size)
        apdu_count ++;

    //  Have to have at least one APDU.
    zmq_assert (apdu_count);

    return apdu_count;
}

//  Allocate buffer for one packet from the transmit window, The memory buffer 
//  is owned by the transmit window and so must be returned to the window with 
//  content via pgm_transport_send() calls or unused with pgm_packetv_free1(). 
void *zmq::pgm_socket_t::get_buffer (size_t *size_)
{
    //  Store size.
    *size_ = get_max_tsdu_size ();

    //  Allocate one packet.
    return pgm_packetv_alloc (g_transport, false);
}

//  Return an unused packet allocated from the transmit window 
//  via pgm_packetv_alloc(). 
void zmq::pgm_socket_t::free_buffer (void *data_)
{
    pgm_packetv_free1 (g_transport, data_, false);
}

//  pgm_transport_recvmsgv is called to fill the pgm_msgv array up to 
//  pgm_msgv_len. In subsequent calls data from pgm_msgv structure are 
//  returned.
ssize_t zmq::pgm_socket_t::receive (void **raw_data_)
{
    //  We just sent all data from pgm_transport_recvmsgv up 
    //  and have to return 0 that another engine in this thread is scheduled.
    if (nbytes_rec == nbytes_processed && nbytes_rec > 0) {

        //  Reset all the counters.
        nbytes_rec = 0;
        nbytes_processed = 0;
        pgm_msgv_processed = 0;

        return 0;
    }

    //  If we have are going first time or if we have processed all pgm_msgv_t
    //  structure previously read from the pgm socket.
    if (nbytes_rec == nbytes_processed) {

        //  Check program flow.
        zmq_assert (pgm_msgv_processed == 0);
        zmq_assert (nbytes_processed == 0);
        zmq_assert (nbytes_rec == 0);

        //  Receive a vector of Application Protocol Domain Unit's (APDUs) 
        //  from the transport.
        nbytes_rec = pgm_transport_recvmsgv (g_transport, pgm_msgv, 
            pgm_msgv_len, MSG_DONTWAIT);
  
        //  In a case when no ODATA/RDATA fired POLLIN event (SPM...)
        //  pgm_transport_recvmsg returns -1 with errno == EAGAIN.
        if (nbytes_rec == -1 && errno == EAGAIN) {
        
            //  In case if no RDATA/ODATA caused POLLIN 0 is 
            //  returned.
            nbytes_rec = 0;
            return 0;
        }

        //  For data loss nbytes_rec == -1 errno == ECONNRESET.
        if (nbytes_rec == -1 && errno == ECONNRESET) {
            
            //  In case of dala loss -1 is returned.
            zmq_log (1, "Data loss detected, %s(%i)\n", __FILE__, __LINE__);
            nbytes_rec = 0;
            return -1;
        }

        //  Catch the rest of the errors.
        if (nbytes_rec <= 0) {
            zmq_log (2, "received %i B, errno %i, %s(%i)", (int)nbytes_rec, 
                errno, __FILE__, __LINE__);
            errno_assert (nbytes_rec > 0);
        }
   
        zmq_log (4, "received %i bytes\n", (int)nbytes_rec);

    }

    zmq_assert (nbytes_rec > 0);

    // Only one APDU per pgm_msgv_t structure is allowed. 
    zmq_assert (pgm_msgv [pgm_msgv_processed].msgv_iovlen == 1);

    //  Take pointers from pgm_msgv_t structure.
    *raw_data_ = pgm_msgv[pgm_msgv_processed].msgv_iov->iov_base;
    size_t raw_data_len = pgm_msgv[pgm_msgv_processed].msgv_iov->iov_len;

    //  Check if peer TSI did not change, this is detection of peer restart.
    const pgm_tsi_t *current_tsi = pgm_msgv [pgm_msgv_processed].msgv_tsi;

    //  If empty store new TSI.
    if (tsi_empty (&tsi)) {
        //  Store current peer TSI.
        memcpy (&tsi, current_tsi, sizeof (pgm_tsi_t));
#ifdef PGM_SOCKET_DEBUG
        uint8_t *gsi = (uint8_t*)(&tsi)->gsi.identifier;
#endif

        zmq_log (1, "First peer TSI: %i.%i.%i.%i.%i.%i.%i, %s(%i)\n",
            gsi [0], gsi [1], gsi [2], gsi [3], gsi [4], gsi [5], 
            ntohs (tsi.sport), __FILE__, __LINE__);
    }

    //  Compare stored TSI with actual.
    if (!tsi_equal (&tsi, current_tsi)) {
        //  Peer change detected.
        zmq_log (1, "Peer change detected, %s(%i)\n", __FILE__, __LINE__);
        
        //  Compare with retired TSI, in case of match ignore APDU.
        if (tsi_equal (&retired_tsi, current_tsi)) {
            zmq_log (1, "Retired TSI - ignoring APDU, %s(%i)\n", 
                __FILE__, __LINE__); 
            
            //  Move the the next pgm_msgv_t structure.
            pgm_msgv_processed++;
            nbytes_processed +=raw_data_len;
            
            return 0;

        } else {
            zmq_log (1, "New TSI, %s(%i)\n", __FILE__, __LINE__); 

            //  Store new TSI and move last valid to retired_tsi
            memcpy (&retired_tsi, &tsi, sizeof (pgm_tsi_t));
            memcpy (&tsi, current_tsi, sizeof (pgm_tsi_t));

#ifdef PGM_SOCKET_DEBUG
            uint8_t *gsi = (uint8_t*)(&retired_tsi)->gsi.identifier;
#endif
            zmq_log (1, "retired TSI: %i.%i.%i.%i.%i.%i.%i, %s(%i)\n",
                gsi [0], gsi [1], gsi [2], gsi [3], gsi [4], gsi [5], 
                ntohs (retired_tsi.sport), __FILE__, __LINE__);

#ifdef PGM_SOCKET_DEBUG
            gsi = (uint8_t*)(&tsi)->gsi.identifier;
#endif
            zmq_log (1, "        TSI: %i.%i.%i.%i.%i.%i.%i, %s(%i)\n",
                gsi [0], gsi [1], gsi [2], gsi [3], gsi [4], gsi [5], 
                ntohs (tsi.sport), __FILE__, __LINE__);

            //  Peers change is recognized as a GAP.
            return -1;
        }

    }
        
    //  Move the the next pgm_msgv_t structure.
    pgm_msgv_processed++;
    nbytes_processed +=raw_data_len;

    zmq_log (4, "sendig up %i bytes\n", (int)raw_data_len);

    return raw_data_len;
}

void zmq::pgm_socket_t::process_upstream (void)
{
    zmq_log (1, "On upstream packet, %s(%i)\n", __FILE__, __LINE__);
    //  We acctually do not want to read any data here we are going to 
    //  process NAK.
    pgm_msgv_t dummy_msg;

    ssize_t dummy_bytes = pgm_transport_recvmsgv (g_transport, &dummy_msg,
        1, MSG_DONTWAIT);
    
    //  No data should be returned.
    zmq_assert (dummy_bytes == -1 && errno == EAGAIN);
}

bool zmq::pgm_socket_t::tsi_equal (const pgm_tsi_t *tsi_a_, 
    const pgm_tsi_t *tsi_b_)
{
    //  Compare 6B GSI.
    const uint8_t *gsi_a = tsi_a_->gsi.identifier;
    const uint8_t *gsi_b = tsi_b_->gsi.identifier;

    if (gsi_a [0] != gsi_b [0] || gsi_a [1] != gsi_b [1] || 
          gsi_a [2] != gsi_b [2] || gsi_a [3] != gsi_b [3] ||
          gsi_a [4] != gsi_b [4] || gsi_a [5] != gsi_b [5]) {

        return false;
    }

    //  Compare source port.
    if (tsi_a_->sport != tsi_b_->sport) {
        return false;
    }

    return true;
}

bool zmq::pgm_socket_t::tsi_empty (const pgm_tsi_t *tsi_)
{

    uint8_t *gsi = (uint8_t*)tsi_->gsi.identifier;

    //  GSI.
    if (gsi [0] != 0 || gsi [1] != 0 || gsi [2] != 0 || 
         gsi [3] != 0 || gsi [4] != 0 || gsi [5] != 0) {
        return false;
    }

    //  Source port.
    if (tsi_->sport != 0) {
        return false;
    }

    return true;
}

#endif

#endif