summaryrefslogtreecommitdiff
path: root/src/pgm_socket.cpp
blob: 10d8f39c4b693e15db59780e6745e2f2bf434551 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
/*
    Copyright (c) 2007-2011 iMatix Corporation
    Copyright (c) 2007-2011 Other contributors as noted in the AUTHORS file

    This file is part of 0MQ.

    0MQ is free software; you can redistribute it and/or modify it under
    the terms of the GNU Lesser General Public License as published by
    the Free Software Foundation; either version 3 of the License, or
    (at your option) any later version.

    0MQ is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU Lesser General Public License for more details.

    You should have received a copy of the GNU Lesser General Public License
    along with this program.  If not, see <http://www.gnu.org/licenses/>.
*/

#include "platform.hpp"

#ifdef ZMQ_HAVE_OPENPGM

#ifdef ZMQ_HAVE_WINDOWS
#include "windows.hpp"
#endif

#ifdef ZMQ_HAVE_LINUX
#include <poll.h>
#endif

#include <stdlib.h>
#include <string.h>
#include <string>

#include "options.hpp"
#include "pgm_socket.hpp"
#include "config.hpp"
#include "err.hpp"
#include "uuid.hpp"
#include "stdint.hpp"

#ifndef MSG_ERRQUEUE
#define MSG_ERRQUEUE 0x2000
#endif

zmq::pgm_socket_t::pgm_socket_t (bool receiver_, const options_t &options_) :
    sock (NULL),
    options (options_),
    receiver (receiver_),
    pgm_msgv (NULL),
    pgm_msgv_len (0),
    nbytes_rec (0),
    nbytes_processed (0),
    pgm_msgv_processed (0)
{
}

//  Create, bind and connect PGM socket.
//  network_ of the form <interface & multicast group decls>:<IP port>
//  e.g. eth0;239.192.0.1:7500
//       link-local;224.250.0.1,224.250.0.2;224.250.0.3:8000
//       ;[fe80::1%en0]:7500
int zmq::pgm_socket_t::init (bool udp_encapsulation_, const char *network_)
{
    //  Can not open transport before destroying old one. 
    zmq_assert (sock == NULL);
 
    //  Parse port number, start from end for IPv6
    const char *port_delim = strrchr (network_, ':');
    if (!port_delim) {
        errno = EINVAL;
        return -1;
    }

    uint16_t port_number = atoi (port_delim + 1);
  
    char network [256];
    if (port_delim - network_ >= (int) sizeof (network) - 1) {
        errno = EINVAL;
        return -1;
    }
    memset (network, '\0', sizeof (network));
    memcpy (network, network_, port_delim - network_);

    zmq_assert (options.rate > 0);
   
    //  Zero counter used in msgrecv.
    nbytes_rec = 0;
    nbytes_processed = 0;
    pgm_msgv_processed = 0;

    pgm_error_t *pgm_error = NULL;
    struct pgm_addrinfo_t hints, *res = NULL;
    sa_family_t sa_family;

    memset (&hints, 0, sizeof (hints));
    hints.ai_family = AF_UNSPEC;
    if (!pgm_getaddrinfo (network, NULL, &res, &pgm_error)) {

        //  Invalid parameters don't set pgm_error_t.
        zmq_assert (pgm_error != NULL);
        if (pgm_error->domain == PGM_ERROR_DOMAIN_IF && (

              //  NB: cannot catch EAI_BADFLAGS.
              pgm_error->code != PGM_ERROR_SERVICE &&
              pgm_error->code != PGM_ERROR_SOCKTNOSUPPORT))

            //  User, host, or network configuration or transient error.
            goto err_abort;

        //  Fatal OpenPGM internal error.
        zmq_assert (false);
    }

    zmq_assert (res != NULL);

    //  Pick up detected IP family.
    sa_family = res->ai_send_addrs[0].gsr_group.ss_family;

    //  Create IP/PGM or UDP/PGM socket.
    if (udp_encapsulation_) {
        if (!pgm_socket (&sock, sa_family, SOCK_SEQPACKET, IPPROTO_UDP,
              &pgm_error)) {

            //  Invalid parameters don't set pgm_error_t.
            zmq_assert (pgm_error != NULL);
            if (pgm_error->domain == PGM_ERROR_DOMAIN_SOCKET && (
                  pgm_error->code != PGM_ERROR_BADF &&
                  pgm_error->code != PGM_ERROR_FAULT &&
                  pgm_error->code != PGM_ERROR_NOPROTOOPT &&
                  pgm_error->code != PGM_ERROR_FAILED))

                //  User, host, or network configuration or transient error.
                goto err_abort;

            //  Fatal OpenPGM internal error.
            zmq_assert (false);
        }

        //  All options are of data type int
        const int encapsulation_port = port_number;
        if (!pgm_setsockopt (sock, IPPROTO_PGM, PGM_UDP_ENCAP_UCAST_PORT,
                &encapsulation_port, sizeof (encapsulation_port)))
            goto err_abort;
        if (!pgm_setsockopt (sock, IPPROTO_PGM, PGM_UDP_ENCAP_MCAST_PORT,
                &encapsulation_port, sizeof (encapsulation_port)))
            goto err_abort;
    }
    else {
        if (!pgm_socket (&sock, sa_family, SOCK_SEQPACKET, IPPROTO_PGM,
              &pgm_error)) {

            //  Invalid parameters don't set pgm_error_t.
            zmq_assert (pgm_error != NULL);
            if (pgm_error->domain == PGM_ERROR_DOMAIN_SOCKET && (
                  pgm_error->code != PGM_ERROR_BADF &&
                  pgm_error->code != PGM_ERROR_FAULT &&
                  pgm_error->code != PGM_ERROR_NOPROTOOPT &&
                  pgm_error->code != PGM_ERROR_FAILED))

                //  User, host, or network configuration or transient error.
                goto err_abort;

            //  Fatal OpenPGM internal error.
            zmq_assert (false);
        }
    }

    {
        const int rcvbuf = (int) options.rcvbuf,
                  sndbuf = (int) options.sndbuf,
                  max_tpdu = (int) pgm_max_tpdu;
        if (rcvbuf) {
            if (!pgm_setsockopt (sock, SOL_SOCKET, SO_RCVBUF, &rcvbuf,
                  sizeof (rcvbuf)))
                goto err_abort;
        }
        if (sndbuf) {
            if (!pgm_setsockopt (sock, SOL_SOCKET, SO_SNDBUF, &sndbuf,
                  sizeof (sndbuf)))
                goto err_abort;
        }

        //  Set maximum transport protocol data unit size (TPDU).
        if (!pgm_setsockopt (sock, IPPROTO_PGM, PGM_MTU, &max_tpdu,
              sizeof (max_tpdu)))
            goto err_abort;
    }

    if (receiver) {
        const int recv_only        = 1,
                  rxw_max_tpdu     = (int) pgm_max_tpdu,
                  rxw_sqns         = compute_sqns (rxw_max_tpdu),
                  peer_expiry      = pgm_secs (300),
                  spmr_expiry      = pgm_msecs (25),
                  nak_bo_ivl       = pgm_msecs (50),
                  nak_rpt_ivl      = pgm_msecs (200),
                  nak_rdata_ivl    = pgm_msecs (200),
                  nak_data_retries = 50,
                  nak_ncf_retries  = 50;

        if (!pgm_setsockopt (sock, IPPROTO_PGM, PGM_RECV_ONLY, &recv_only,
                sizeof (recv_only)) ||
            !pgm_setsockopt (sock, IPPROTO_PGM, PGM_RXW_SQNS, &rxw_sqns,
                sizeof (rxw_sqns)) ||
            !pgm_setsockopt (sock, IPPROTO_PGM, PGM_PEER_EXPIRY, &peer_expiry,
                sizeof (peer_expiry)) ||
            !pgm_setsockopt (sock, IPPROTO_PGM, PGM_SPMR_EXPIRY, &spmr_expiry,
                sizeof (spmr_expiry)) ||
            !pgm_setsockopt (sock, IPPROTO_PGM, PGM_NAK_BO_IVL, &nak_bo_ivl,
                sizeof (nak_bo_ivl)) ||
            !pgm_setsockopt (sock, IPPROTO_PGM, PGM_NAK_RPT_IVL, &nak_rpt_ivl,
                sizeof (nak_rpt_ivl)) ||
            !pgm_setsockopt (sock, IPPROTO_PGM, PGM_NAK_RDATA_IVL,
                &nak_rdata_ivl, sizeof (nak_rdata_ivl)) ||
            !pgm_setsockopt (sock, IPPROTO_PGM, PGM_NAK_DATA_RETRIES,
                &nak_data_retries, sizeof (nak_data_retries)) ||
            !pgm_setsockopt (sock, IPPROTO_PGM, PGM_NAK_NCF_RETRIES,
                &nak_ncf_retries, sizeof (nak_ncf_retries)))
            goto err_abort;
    } else {
        const int send_only        = 1,
                  txw_max_tpdu     = (int) pgm_max_tpdu,
                  txw_sqns         = compute_sqns (txw_max_tpdu),
                  ambient_spm      = pgm_secs (30),
                  heartbeat_spm[]  = { pgm_msecs (100),
                                       pgm_msecs (100),
                                       pgm_msecs (100),
                                       pgm_msecs (100),
                                       pgm_msecs (1300),
                                       pgm_secs  (7),
                                       pgm_secs  (16),
                                       pgm_secs  (25),
                                       pgm_secs  (30) };

        if (!pgm_setsockopt (sock, IPPROTO_PGM, PGM_SEND_ONLY,
                &send_only, sizeof (send_only)) ||
            !pgm_setsockopt (sock, IPPROTO_PGM, PGM_TXW_SQNS,
                &txw_sqns, sizeof (txw_sqns)) ||
            !pgm_setsockopt (sock, IPPROTO_PGM, PGM_AMBIENT_SPM,
                &ambient_spm, sizeof (ambient_spm)) ||
            !pgm_setsockopt (sock, IPPROTO_PGM, PGM_HEARTBEAT_SPM,
                &heartbeat_spm, sizeof (heartbeat_spm)))
            goto err_abort;
    }

    //  PGM transport GSI.
    struct pgm_sockaddr_t addr;

    memset (&addr, 0, sizeof(addr));
    addr.sa_port = port_number;
    addr.sa_addr.sport = DEFAULT_DATA_SOURCE_PORT;

    if (options.identity.size () > 0) {

        //  Create gsi from identity.
        if (!pgm_gsi_create_from_data (&addr.sa_addr.gsi,
              options.identity.data (), options.identity.size ()))
            goto err_abort;
    } else {

        //  Generate random gsi.
        std::string gsi_base = uuid_t ().to_string ();
        if (!pgm_gsi_create_from_string (&addr.sa_addr.gsi,
              gsi_base.c_str (), -1))
            goto err_abort;
    }

    //  Bind a transport to the specified network devices.
    struct pgm_interface_req_t if_req;
    memset (&if_req, 0, sizeof(if_req));
    if_req.ir_interface = res->ai_recv_addrs[0].gsr_interface;
    if_req.ir_scope_id  = 0;
    if (AF_INET6 == sa_family) {
        struct sockaddr_in6 sa6;
        memcpy (&sa6, &res->ai_recv_addrs[0].gsr_group, sizeof (sa6));
        if_req.ir_scope_id = sa6.sin6_scope_id;
    }
    if (!pgm_bind3 (sock, &addr, sizeof (addr), &if_req, sizeof (if_req),
          &if_req, sizeof (if_req), &pgm_error)) {

        //  Invalid parameters don't set pgm_error_t.
        zmq_assert (pgm_error != NULL);
        if ((pgm_error->domain == PGM_ERROR_DOMAIN_SOCKET ||
             pgm_error->domain == PGM_ERROR_DOMAIN_IF) && (
             pgm_error->code != PGM_ERROR_INVAL &&
             pgm_error->code != PGM_ERROR_BADF &&
             pgm_error->code != PGM_ERROR_FAULT))

            //  User, host, or network configuration or transient error.
            goto err_abort;

        //  Fatal OpenPGM internal error.
        zmq_assert (false);
    }

    //  Join IP multicast groups.
    for (unsigned i = 0; i < res->ai_recv_addrs_len; i++) {
        if (!pgm_setsockopt (sock, IPPROTO_PGM, PGM_JOIN_GROUP,
              &res->ai_recv_addrs [i], sizeof (struct group_req)))
            goto err_abort;
    }
    if (!pgm_setsockopt (sock, IPPROTO_PGM, PGM_SEND_GROUP,
          &res->ai_send_addrs [0], sizeof (struct group_req)))
        goto err_abort;

    pgm_freeaddrinfo (res);
    res = NULL;

    //  Set IP level parameters.
    {
        const int nonblocking      = 1,
                  multicast_loop   = 0,
                  multicast_hops   = 16,

                  //  Expedited Forwarding PHB for network elements, no ECN.
                  dscp             = 0x2e << 2; 

        if (!pgm_setsockopt (sock, IPPROTO_PGM, PGM_MULTICAST_LOOP,
                &multicast_loop, sizeof (multicast_loop)) ||
            !pgm_setsockopt (sock, IPPROTO_PGM, PGM_MULTICAST_HOPS,
                &multicast_hops, sizeof (multicast_hops)))
            goto err_abort;
        if (AF_INET6 != sa_family && !pgm_setsockopt (sock,
              IPPROTO_PGM, PGM_TOS, &dscp, sizeof (dscp)))
            goto err_abort;
        if (!pgm_setsockopt (sock, IPPROTO_PGM, PGM_NOBLOCK,
              &nonblocking, sizeof (nonblocking)))
            goto err_abort;
    }

    //  Connect PGM transport to start state machine.
    if (!pgm_connect (sock, &pgm_error)) {

        //  Invalid parameters don't set pgm_error_t.
        zmq_assert (pgm_error != NULL);
        goto err_abort;
    }

    //  For receiver transport preallocate pgm_msgv array.
    if (receiver) {
        zmq_assert (in_batch_size > 0);
        size_t max_tsdu_size = get_max_tsdu_size ();
        pgm_msgv_len = (int) in_batch_size / max_tsdu_size;
        if ((int) in_batch_size % max_tsdu_size)
            pgm_msgv_len++;
        zmq_assert (pgm_msgv_len);

        pgm_msgv = (pgm_msgv_t*) malloc (sizeof (pgm_msgv_t) * pgm_msgv_len);
        alloc_assert (pgm_msgv);
    }

    return 0;

err_abort:
    if (sock != NULL) {
        pgm_close (sock, FALSE);
        sock = NULL;
    }
    if (res != NULL) {
        pgm_freeaddrinfo (res);
        res = NULL;
    }
    if (pgm_error != NULL) {
        pgm_error_free (pgm_error);
        pgm_error = NULL;
    }
    errno = EINVAL;
    return -1;
}

zmq::pgm_socket_t::~pgm_socket_t ()
{
    if (pgm_msgv)
        free (pgm_msgv);
    if (sock) 
        pgm_close (sock, TRUE);
}

//  Get receiver fds. receive_fd_ is signaled for incoming packets,
//  waiting_pipe_fd_ is signaled for state driven events and data.
void zmq::pgm_socket_t::get_receiver_fds (int *receive_fd_, 
    int *waiting_pipe_fd_)
{
    socklen_t socklen;
    bool rc;

    zmq_assert (receive_fd_);
    zmq_assert (waiting_pipe_fd_);

    socklen = sizeof (*receive_fd_);
    rc = pgm_getsockopt (sock, IPPROTO_PGM, PGM_RECV_SOCK, receive_fd_,
        &socklen);
    zmq_assert (rc);
    zmq_assert (socklen == sizeof (*receive_fd_));

    socklen = sizeof (*waiting_pipe_fd_);
    rc = pgm_getsockopt (sock, IPPROTO_PGM, PGM_PENDING_SOCK, waiting_pipe_fd_,
        &socklen);
    zmq_assert (rc);
    zmq_assert (socklen == sizeof (*waiting_pipe_fd_));
}

//  Get fds and store them into user allocated memory. 
//  send_fd is for non-blocking send wire notifications.
//  receive_fd_ is for incoming back-channel protocol packets.
//  rdata_notify_fd_ is raised for waiting repair transmissions.
//  pending_notify_fd_ is for state driven events.
void zmq::pgm_socket_t::get_sender_fds (int *send_fd_, int *receive_fd_, 
    int *rdata_notify_fd_, int *pending_notify_fd_)
{
    socklen_t socklen;
    bool rc;

    zmq_assert (send_fd_);
    zmq_assert (receive_fd_);
    zmq_assert (rdata_notify_fd_);
    zmq_assert (pending_notify_fd_);

    socklen = sizeof (*send_fd_);
    rc = pgm_getsockopt (sock, IPPROTO_PGM, PGM_SEND_SOCK, send_fd_, &socklen);
    zmq_assert (rc);
    zmq_assert (socklen == sizeof (*receive_fd_));

    socklen = sizeof (*receive_fd_);
    rc = pgm_getsockopt (sock, IPPROTO_PGM, PGM_RECV_SOCK, receive_fd_,
        &socklen);
    zmq_assert (rc);
    zmq_assert (socklen == sizeof (*receive_fd_));

    socklen = sizeof (*rdata_notify_fd_);
    rc = pgm_getsockopt (sock, IPPROTO_PGM, PGM_REPAIR_SOCK, rdata_notify_fd_,
        &socklen);
    zmq_assert (rc);
    zmq_assert (socklen == sizeof (*rdata_notify_fd_));

    socklen = sizeof (*pending_notify_fd_);
    rc = pgm_getsockopt (sock, IPPROTO_PGM, PGM_PENDING_SOCK,
        pending_notify_fd_, &socklen);
    zmq_assert (rc);
    zmq_assert (socklen == sizeof (*pending_notify_fd_));
}

//  Send one APDU, transmit window owned memory.
//  data_len_ must be less than one TPDU.
size_t zmq::pgm_socket_t::send (unsigned char *data_, size_t data_len_)
{
    size_t nbytes = 0;
   
    const int status = pgm_send (sock, data_, data_len_, &nbytes);

    //  We have to write all data as one packet.
    if (nbytes > 0) {
        zmq_assert (status == PGM_IO_STATUS_NORMAL);
        zmq_assert ((ssize_t) nbytes == (ssize_t) data_len_);
    } else {
        zmq_assert (status == PGM_IO_STATUS_RATE_LIMITED ||
            status == PGM_IO_STATUS_WOULD_BLOCK);

        if (status == PGM_IO_STATUS_RATE_LIMITED)
            errno = ENOMEM;
        else
            errno = EBUSY;
    }

    //  Save return value.
    last_tx_status = status;

    return nbytes;
}

long zmq::pgm_socket_t::get_rx_timeout ()
{
    if (last_rx_status != PGM_IO_STATUS_RATE_LIMITED &&
          last_rx_status != PGM_IO_STATUS_TIMER_PENDING)
        return -1;

    struct timeval tv;
    socklen_t optlen = sizeof (tv);
    const bool rc = pgm_getsockopt (sock, IPPROTO_PGM,
        last_rx_status == PGM_IO_STATUS_RATE_LIMITED ? PGM_RATE_REMAIN :
        PGM_TIME_REMAIN, &tv, &optlen);
    zmq_assert (rc);

    const long timeout = (tv.tv_sec * 1000) + (tv.tv_usec / 1000);

    return timeout;
}

long zmq::pgm_socket_t::get_tx_timeout ()
{
    if (last_tx_status != PGM_IO_STATUS_RATE_LIMITED)
        return -1;

    struct timeval tv;
    socklen_t optlen = sizeof (tv);
    const bool rc = pgm_getsockopt (sock, IPPROTO_PGM, PGM_RATE_REMAIN, &tv,
        &optlen);
    zmq_assert (rc);

    const long timeout = (tv.tv_sec * 1000) + (tv.tv_usec / 1000);

    return timeout;
}

//  Return max TSDU size without fragmentation from current PGM transport.
size_t zmq::pgm_socket_t::get_max_tsdu_size ()
{
    int max_tsdu = 0;
    socklen_t optlen = sizeof (max_tsdu);

    bool rc = pgm_getsockopt (sock, IPPROTO_PGM, PGM_MSS, &max_tsdu, &optlen);
    zmq_assert (rc);
    zmq_assert (optlen == sizeof (max_tsdu));
    return (size_t) max_tsdu;
}

//  pgm_recvmsgv is called to fill the pgm_msgv array up to  pgm_msgv_len.
//  In subsequent calls data from pgm_msgv structure are returned.
ssize_t zmq::pgm_socket_t::receive (void **raw_data_, const pgm_tsi_t **tsi_)
{
    size_t raw_data_len = 0;

    //  We just sent all data from pgm_transport_recvmsgv up 
    //  and have to return 0 that another engine in this thread is scheduled.
    if (nbytes_rec == nbytes_processed && nbytes_rec > 0) {

        //  Reset all the counters.
        nbytes_rec = 0;
        nbytes_processed = 0;
        pgm_msgv_processed = 0;
        errno = EAGAIN;
        return 0;
    }

    //  If we have are going first time or if we have processed all pgm_msgv_t
    //  structure previously read from the pgm socket.
    if (nbytes_rec == nbytes_processed) {

        //  Check program flow.
        zmq_assert (pgm_msgv_processed == 0);
        zmq_assert (nbytes_processed == 0);
        zmq_assert (nbytes_rec == 0);

        //  Receive a vector of Application Protocol Domain Unit's (APDUs) 
        //  from the transport.
        pgm_error_t *pgm_error = NULL;

        const int status = pgm_recvmsgv (sock, pgm_msgv,
            pgm_msgv_len, MSG_ERRQUEUE, &nbytes_rec, &pgm_error);

        //  Invalid parameters.
        zmq_assert (status != PGM_IO_STATUS_ERROR);

        last_rx_status = status;

        //  In a case when no ODATA/RDATA fired POLLIN event (SPM...)
        //  pgm_recvmsg returns PGM_IO_STATUS_TIMER_PENDING.
        if (status == PGM_IO_STATUS_TIMER_PENDING) {

            zmq_assert (nbytes_rec == 0);

            //  In case if no RDATA/ODATA caused POLLIN 0 is 
            //  returned.
            nbytes_rec = 0;
            errno = EBUSY;
            return 0;
        }

        //  Send SPMR, NAK, ACK is rate limited.
        if (status == PGM_IO_STATUS_RATE_LIMITED) {

            zmq_assert (nbytes_rec == 0);

            //  In case if no RDATA/ODATA caused POLLIN 0 is returned.
            nbytes_rec = 0;
            errno = ENOMEM;
            return 0;
        }

        //  No peers and hence no incoming packets.
        if (status == PGM_IO_STATUS_WOULD_BLOCK) {

            zmq_assert (nbytes_rec == 0);

            //  In case if no RDATA/ODATA caused POLLIN 0 is returned.
            nbytes_rec = 0;
            errno = EAGAIN;
            return 0;
        }

        //  Data loss.
        if (status == PGM_IO_STATUS_RESET) {

            struct pgm_sk_buff_t* skb = pgm_msgv [0].msgv_skb [0];

            //  Save lost data TSI.
            *tsi_ = &skb->tsi;
            nbytes_rec = 0;

            //  In case of dala loss -1 is returned.
            errno = EINVAL;
            pgm_free_skb (skb);
            return -1;
        }

        zmq_assert (status == PGM_IO_STATUS_NORMAL);
    }
    else
    {
        zmq_assert (pgm_msgv_processed <= pgm_msgv_len);
    }

    // Zero byte payloads are valid in PGM, but not 0MQ protocol.
    zmq_assert (nbytes_rec > 0);

    // Only one APDU per pgm_msgv_t structure is allowed.
    zmq_assert (pgm_msgv [pgm_msgv_processed].msgv_len == 1);
 
    struct pgm_sk_buff_t* skb = 
        pgm_msgv [pgm_msgv_processed].msgv_skb [0];

    //  Take pointers from pgm_msgv_t structure.
    *raw_data_ = skb->data;
    raw_data_len = skb->len;

    //  Save current TSI.
    *tsi_ = &skb->tsi;

    //  Move the the next pgm_msgv_t structure.
    pgm_msgv_processed++;
    zmq_assert (pgm_msgv_processed <= pgm_msgv_len);
    nbytes_processed +=raw_data_len;

    return raw_data_len;
}

void zmq::pgm_socket_t::process_upstream ()
{
    pgm_msgv_t dummy_msg;

    size_t dummy_bytes = 0;
    pgm_error_t *pgm_error = NULL;

    const int status = pgm_recvmsgv (sock, &dummy_msg,
        1, MSG_ERRQUEUE, &dummy_bytes, &pgm_error);

    //  Invalid parameters.
    zmq_assert (status != PGM_IO_STATUS_ERROR);

    //  No data should be returned.
    zmq_assert (dummy_bytes == 0 && (status == PGM_IO_STATUS_TIMER_PENDING || 
        status == PGM_IO_STATUS_RATE_LIMITED ||
        status == PGM_IO_STATUS_WOULD_BLOCK));

    last_rx_status = status;

    if (status == PGM_IO_STATUS_TIMER_PENDING)
        errno = EBUSY;
    else if (status == PGM_IO_STATUS_RATE_LIMITED)
        errno = ENOMEM;
    else
        errno = EAGAIN;
}

int zmq::pgm_socket_t::compute_sqns (int tpdu_)
{
    //  Convert rate into B/ms.
    uint64_t rate = ((uint64_t) options.rate) / 8;
        
    //  Compute the size of the buffer in bytes.
    uint64_t size = options.recovery_ivl * rate;

    //  Translate the size into number of packets.
    uint64_t sqns = size / tpdu_;

    //  Buffer should be able to hold at least one packet.
    if (sqns == 0)
        sqns = 1;

    return sqns;
}

#endif