1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
|
/*
Copyright (c) 2007-2011 iMatix Corporation
Copyright (c) 2007-2011 Other contributors as noted in the AUTHORS file
This file is part of 0MQ.
0MQ is free software; you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
0MQ is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "platform.hpp"
#if defined ZMQ_HAVE_WINDOWS
#include "windows.hpp"
#else
#include <unistd.h>
#include <sys/socket.h>
#include <arpa/inet.h>
#include <netinet/tcp.h>
#include <netinet/in.h>
#include <netdb.h>
#include <fcntl.h>
#endif
#include <string.h>
#include <new>
#include "tcp_engine.hpp"
#include "io_thread.hpp"
#include "session.hpp"
#include "config.hpp"
#include "err.hpp"
zmq::tcp_engine_t::tcp_engine_t (fd_t fd_, const options_t &options_) :
s (fd_),
inpos (NULL),
insize (0),
decoder (in_batch_size, options_.maxmsgsize),
outpos (NULL),
outsize (0),
encoder (out_batch_size),
session (NULL),
leftover_session (NULL),
options (options_),
plugged (false)
{
int rc;
// Set the socket to the non-blocking mode.
#ifdef ZMQ_HAVE_WINDOWS
u_long nonblock = 1;
rc = ioctlsocket (s, FIONBIO, &nonblock);
wsa_assert (rc != SOCKET_ERROR);
#elif ZMQ_HAVE_OPENVMS
int nonblock = 1;
rc = ioctl (s, FIONBIO, &nonblock);
errno_assert (rc != -1);
#else
int flags = fcntl (s, F_GETFL, 0);
if (flags == -1)
flags = 0;
rc = fcntl (s, F_SETFL, flags | O_NONBLOCK);
errno_assert (rc != -1);
#endif
// Set the socket buffer limits for the underlying socket.
if (options.sndbuf) {
rc = setsockopt (s, SOL_SOCKET, SO_SNDBUF,
(char*) &options.sndbuf, sizeof (int));
#ifdef ZMQ_HAVE_WINDOWS
wsa_assert (rc != SOCKET_ERROR);
#else
errno_assert (rc == 0);
#endif
}
if (options.rcvbuf) {
rc = setsockopt (s, SOL_SOCKET, SO_RCVBUF,
(char*) &options.rcvbuf, sizeof (int));
#ifdef ZMQ_HAVE_WINDOWS
wsa_assert (rc != SOCKET_ERROR);
#else
errno_assert (rc == 0);
#endif
}
#if defined ZMQ_HAVE_OSX || defined ZMQ_HAVE_FREEBSD
// Make sure that SIGPIPE signal is not generated when writing to a
// connection that was already closed by the peer.
int set = 1;
rc = setsockopt (s, SOL_SOCKET, SO_NOSIGPIPE, &set, sizeof (int));
errno_assert (rc == 0);
#endif
}
zmq::tcp_engine_t::~tcp_engine_t ()
{
zmq_assert (!plugged);
if (s != retired_fd) {
#ifdef ZMQ_HAVE_WINDOWS
int rc = closesocket (s);
wsa_assert (rc != SOCKET_ERROR);
#else
int rc = close (s);
errno_assert (rc == 0);
#endif
s = retired_fd;
}
}
void zmq::tcp_engine_t::plug (io_thread_t *io_thread_, session_t *session_)
{
zmq_assert (!plugged);
plugged = true;
leftover_session = NULL;
// Connect to session object.
zmq_assert (!session);
zmq_assert (session_);
encoder.set_session (session_);
decoder.set_session (session_);
session = session_;
// Connect to I/O threads poller object.
io_object_t::plug (io_thread_);
handle = add_fd (s);
set_pollin (handle);
set_pollout (handle);
// Flush all the data that may have been already received downstream.
in_event ();
}
void zmq::tcp_engine_t::unplug ()
{
zmq_assert (plugged);
plugged = false;
// Cancel all fd subscriptions.
rm_fd (handle);
// Disconnect from I/O threads poller object.
io_object_t::unplug ();
// Disconnect from session object.
encoder.set_session (NULL);
decoder.set_session (NULL);
leftover_session = session;
session = NULL;
}
void zmq::tcp_engine_t::terminate ()
{
unplug ();
delete this;
}
void zmq::tcp_engine_t::in_event ()
{
bool disconnection = false;
// If there's no data to process in the buffer...
if (!insize) {
// Retrieve the buffer and read as much data as possible.
// Note that buffer can be arbitrarily large. However, we assume
// the underlying TCP layer has fixed buffer size and thus the
// number of bytes read will be always limited.
decoder.get_buffer (&inpos, &insize);
insize = read (inpos, insize);
// Check whether the peer has closed the connection.
if (insize == (size_t) -1) {
insize = 0;
disconnection = true;
}
}
// Push the data to the decoder.
size_t processed = decoder.process_buffer (inpos, insize);
if (unlikely (processed == (size_t) -1)) {
disconnection = true;
}
else {
// Stop polling for input if we got stuck.
if (processed < insize) {
// This may happen if queue limits are in effect.
if (plugged)
reset_pollin (handle);
}
// Adjust the buffer.
inpos += processed;
insize -= processed;
}
// Flush all messages the decoder may have produced.
// If IO handler has unplugged engine, flush transient IO handler.
if (unlikely (!plugged)) {
zmq_assert (leftover_session);
leftover_session->flush ();
} else {
session->flush ();
}
if (session && disconnection)
error ();
}
void zmq::tcp_engine_t::out_event ()
{
// If write buffer is empty, try to read new data from the encoder.
if (!outsize) {
outpos = NULL;
encoder.get_data (&outpos, &outsize);
// If IO handler has unplugged engine, flush transient IO handler.
if (unlikely (!plugged)) {
zmq_assert (leftover_session);
leftover_session->flush ();
return;
}
// If there is no data to send, stop polling for output.
if (outsize == 0) {
reset_pollout (handle);
return;
}
}
// If there are any data to write in write buffer, write as much as
// possible to the socket. Note that amount of data to write can be
// arbitratily large. However, we assume that underlying TCP layer has
// limited transmission buffer and thus the actual number of bytes
// written should be reasonably modest.
int nbytes = write (outpos, outsize);
// Handle problems with the connection.
if (nbytes == -1) {
error ();
return;
}
outpos += nbytes;
outsize -= nbytes;
}
void zmq::tcp_engine_t::activate_out ()
{
set_pollout (handle);
// Speculative write: The assumption is that at the moment new message
// was sent by the user the socket is probably available for writing.
// Thus we try to write the data to socket avoiding polling for POLLOUT.
// Consequently, the latency should be better in request/reply scenarios.
out_event ();
}
void zmq::tcp_engine_t::activate_in ()
{
set_pollin (handle);
// Speculative read.
in_event ();
}
void zmq::tcp_engine_t::error ()
{
zmq_assert (session);
session->detach ();
unplug ();
delete this;
}
int zmq::tcp_engine_t::write (const void *data_, size_t size_)
{
#ifdef ZMQ_HAVE_WINDOWS
int nbytes = send (s, (char*) data_, (int) size_, 0);
// If not a single byte can be written to the socket in non-blocking mode
// we'll get an error (this may happen during the speculative write).
if (nbytes == SOCKET_ERROR && WSAGetLastError () == WSAEWOULDBLOCK)
return 0;
// Signalise peer failure.
if (nbytes == -1 && (
WSAGetLastError () == WSAENETDOWN ||
WSAGetLastError () == WSAENETRESET ||
WSAGetLastError () == WSAEHOSTUNREACH ||
WSAGetLastError () == WSAECONNABORTED ||
WSAGetLastError () == WSAETIMEDOUT ||
WSAGetLastError () == WSAECONNRESET))
return -1;
wsa_assert (nbytes != SOCKET_ERROR);
return (size_t) nbytes;
#else
ssize_t nbytes = send (s, data_, size_, 0);
// Several errors are OK. When speculative write is being done we may not
// be able to write a single byte from the socket. Also, SIGSTOP issued
// by a debugging tool can result in EINTR error.
if (nbytes == -1 && (errno == EAGAIN || errno == EWOULDBLOCK ||
errno == EINTR))
return 0;
// Signalise peer failure.
if (nbytes == -1 && (errno == ECONNRESET || errno == EPIPE))
return -1;
errno_assert (nbytes != -1);
return (size_t) nbytes;
#endif
}
int zmq::tcp_engine_t::read (void *data_, size_t size_)
{
#ifdef ZMQ_HAVE_WINDOWS
int nbytes = recv (s, (char*) data_, (int) size_, 0);
// If not a single byte can be read from the socket in non-blocking mode
// we'll get an error (this may happen during the speculative read).
if (nbytes == SOCKET_ERROR && WSAGetLastError () == WSAEWOULDBLOCK)
return 0;
// Connection failure.
if (nbytes == -1 && (
WSAGetLastError () == WSAENETDOWN ||
WSAGetLastError () == WSAENETRESET ||
WSAGetLastError () == WSAECONNABORTED ||
WSAGetLastError () == WSAETIMEDOUT ||
WSAGetLastError () == WSAECONNRESET ||
WSAGetLastError () == WSAECONNREFUSED ||
WSAGetLastError () == WSAENOTCONN))
return -1;
wsa_assert (nbytes != SOCKET_ERROR);
// Orderly shutdown by the other peer.
if (nbytes == 0)
return -1;
return (size_t) nbytes;
#else
ssize_t nbytes = recv (s, data_, size_, 0);
// Several errors are OK. When speculative read is being done we may not
// be able to read a single byte from the socket. Also, SIGSTOP issued
// by a debugging tool can result in EINTR error.
if (nbytes == -1 && (errno == EAGAIN || errno == EWOULDBLOCK ||
errno == EINTR))
return 0;
// Signalise peer failure.
if (nbytes == -1 && (errno == ECONNRESET || errno == ECONNREFUSED ||
errno == ETIMEDOUT || errno == EHOSTUNREACH))
return -1;
errno_assert (nbytes != -1);
// Orderly shutdown by the peer.
if (nbytes == 0)
return -1;
return (size_t) nbytes;
#endif
}
|